BCl3 Mediated Borylative Cyclization of 2-(1-Alkynyl)-2-alken-1-ones

  • Wu Yi ,
  • Xiao Yuanjing ,
  • Zhang Junliang
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b Department of Chemistry, Fudan University, Shanghai 200438

Received date: 2020-05-10

  Revised date: 2020-06-08

  Online published: 2020-07-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21372084, 21425205, 21871093), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education and the National Basic Research Program of China (973 Program, No. 2015CB-856600).

Abstract

A metal-free, BCl3 mediated borylative cyclization of 2-(1-alkynyl)-2-alken-1-ones leading to synthetic valuable multi-functionalized naphthalene boronates in one step was developed. The boronate functionality present in the product provides many opportunities for derivatization. The salient features of this reaction include moderate to good yields, gram-scale synthesis and diverse synthetic transformations. In the meantime, the new synthetic applications of 2-(1-alkynyl)-2-alken-1-ones have been developed.

Cite this article

Wu Yi , Xiao Yuanjing , Zhang Junliang . BCl3 Mediated Borylative Cyclization of 2-(1-Alkynyl)-2-alken-1-ones[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3908 -3915 . DOI: 10.6023/cjoc202005025

References

[1] (a) Ward, R. S. Nat. Prod. Rep. 1995, 12, 183. (b) Thomson, R. H. Naturally Occurring Quinones IV. Recent Advances, 4th ed. Chapman & Hall, London, 1997.
(c) Liu, X. L.; Zhao, Y.; Wang, W. W.; Wang, M. A.; Zhou, L. G. Chin. J. Org. Chem. 2017, 37, 2883(in Chinese). (刘鑫磊, 赵宇, 王卫伟, 王明安, 周立刚, 有机化学, 2017, 37, 2883.)
[2] (a) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (b) Reddy, R. A.; Baumeister, U.; Keith, C.; Tschierske, C. J. Mater. Chem. 2007, 17, 62.
(c) Svoboda, J.; Novotna, V.; Kozmik, V.; Glogarova, M.; Weissflog, W.; Diele, S.; Pelzl, G. J. Mater. Chem. 2003, 13, 2104.
(d) Christian, J.; Susann, G.; Helmut, H.; Brigitte, S. Naphthalene Compounds for Liquid-Crystalline Mixtures, WO 2017097400 A1.
[3] For selected reviews:(a) Zhou, L.; Zhao, J.; Shan, T.; Cai, X.; Peng, Y. Mini-Rev. Med. Chem. 2010, 10, 977.
(b) Ammar, Y. A.; Salem, M. A.; Fayed, Eman A.; Helal, M. H.; El-Gaby, M. S. A.; Thabet, H. K. Syn. Commun. 2017, 47, 1341. For selected examples:
(c) Zhao, H.; Neamati, N.; Mazumder, A.; Sunder, S.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 1186.
(d) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293.
(e) Wang, Y. H.; Zhao, J. Y. WO 2017202207, 2017.
[4] For reviews:(a) Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenens, Toyota, S.; Iwanaga, T. in Science of Synthesis (Houben-Weyl Methods of Molecular Transformations), Eds.:Siegel, J. S.; Tobe, Y., Vol. 45b, Thieme, Stuttgart, 2010, pp. 745~854.
(b) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7.
(c) Hein, S. J.; Lehnherr, D.; Arslan, H.; Uribe-Romo, F. J.; Dichtel, W. R. Acc. Chem. Res. 2017, 50, 2776.
[5] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
(c) Miyaura, N. Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Halides in Metal-Catalyzed Cross-Coupling Reactions (Eds. A. de Meijere, F. Diederich), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
(d) Li, Y.; Wang, Z. H. Org. Lett. 2009, 11, 1385.
(e) Heffernan, G. D.; Jacobus, D. P.; Schiehser, G. A.; Shieh, H.-M.; Zhao, W. Preparation of Aryl Derivatives as Antimalarial Agents, WO 2014074778A1.
(f) Kikuchi, Y.; Takahagi, H.; One, K.; Iwasawa, N. Chem. Asian J. 2014, 9, 1001.
(g) Wang, Y. B.; Lin, Z. C.; Fan, H. L.; Peng, X. H. Chem. Eur. J. 2016, 22, 10382.
[6] Hall, D. Boronic Acids:Preparation and Applications, Wiley-VCH, Weinheim, 2011.
[7] For reviews, see:(a) Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2003, 680, 3.
(b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. C.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
[8] For recent selected examples:
(c) Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766.
(d) Tang, W. J.; Keshipeddy, S.; Zhang, Y. D.; Wei, X. D.; Savoie, J. Patel, N. D.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2011, 13, 1366.
(e) Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, 50, 11724.
(f) Kawamorita, S.; Ohmiya, H.; Iwai, T.; Sawamura, M. Angew. Chem., Int. Ed. 2011, 50, 8363.
(g) Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 19310.
(h) Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 134.
(i) Jiang, M.; Yang, H. J.; Fu, H. Org. Lett. 2016, 18, 5248.
(j) Xu, Y. L.; Fang, H. Chin. J. Org. Chem. 2018, 38, 738(in Chinese). (徐玉良, 方浩, 有机化学, 2018, 38, 738.)
[9] (a) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134, 19997.
(b) Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943.
(c) Mo, F. Y.; Jiang, Y. B.; Qiu, D.; Zhang, Y.; Wang, J. B. Angew. Chem., Int. Ed. 2010, 49, 1846.
[10] For reviews:(a) Wrackmeyer, B. Heteroat. Chem. 2006, 17, 188.
(b) Melen, R. L. Chem. Commun. 2014, 50, 1161.
(c) Buñuel, E.; Cárdenas, D. J. Eur. J. Org. Chem. 2016, 5446.
(d) Issaian, A.; Tu, K. N.; Blum, S. A. Acc. Chem. Res. 2017, 50, 2598. For selected recent examples:
(e) Yang, C.-H.; Zhang, Y.-S.; Fan, W.-W.; Liu, G.-Q.; Li, Y.-M. Angew. Chem., Int. Ed. 2015, 54, 12636.
(f) Faizi, D. J.; Issaian, A.; Davis, A. J.; Blum, S. A. J. Am. Chem. Soc. 2016, 138, 2126.
(g) Jiang, J. L.; Zhang, Z. Q.; Fu, Y. Asian J. Org. Chem. 2017, 6, 282.
(h) Yuan, K.; Wang, S.-N. Org. Lett. 2017, 19, 1462.
(i) Warner, A. J.; Churn, A.; McGough, J. S.; Ingleson, M. J. Angew. Chem., Int. Ed. 2017, 56, 354.
(j) Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
(k) Jiang, T.; Bartholomeyzik, T.; Mazuela, J.; Willersinn, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 6024.
(l) Yu, S. J.; Wu, C. Z.; Ge, S. Z. J. Am. Chem. Soc. 2017, 139, 6526.
(m) Zuo, Y.-J.; Chang, X.-T.; Hao, Z.-M.; Zhong, C.-M. Org. Biomol. Chem. 2017, 15, 6323.
(n) Wang, H.-M.; Zhou, H.; Xu, Q.-S.; Liu, T.-S.; Zhuang, C.-L.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1777.
(o) Lv, J. H; Zhao, B. L.; liu, L.; Han, Y.; Yuan, Y.; Shi, Z. Z. Adv. Synth. Catal. 2018, 360, 4054.
[11] Liedtke, R.; Harhausen, M.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2012, 14, 1448.
[12] Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Angew. Chem., Int. Ed. 2015, 54, 11245.
[13] For selected examples from our group's work, please see:(a) Xiao, Y. J.; Zhang, J. L. Angew. Chem., Int. Ed. 2008, 47, 1903.
(b) Liu, F.; Yu, Y. H.; Zhang, J. L. Angew. Chem., Int. Ed. 2009, 48, 5505.
(c) Liu, F.; Qian, D. Y.; Li, L.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2010, 49, 6669.
(d) Zhou, L. J.; Zhang, M. R.; Li, W. B.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 6542.
(e) Zhang, Z.-M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 4350.
(f) Wang, Y. D.; Zhang, P. C.; Qian, D. Y.; Zhang, J. L. Angew. Chem., Int. Ed. 2015, 54, 14849.
[14] For selected recent examples from other group's work, please see:(a) Pathipati, S. R.; van der Werf, A.; Eriksson, L.; Selander, N. Angew. Chem., Int. Ed. 2016, 55, 11863.
(b) Kumari, A. L. S.; Swamy, K. C. K. J. Org. Chem. 2016, 81, 1425.
(c) Zhang, H.; Yao, Q.; Lin, L. L.; Xu, C. R.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2017, 359, 3454.
(d) Pathipati, S. R.; Eriksson, L.; Selander, N. Chem. Commun. 2017, 53, 11353.
(e) Liu, S. N.; Yang, P.; Peng, S. Y.; Zhu, C. H.; Cao, S. Y.; Li, J.; Sun, J.-T. Chem. Commun. 2017, 53, 1152.
(f) Zheng, Y.; Chi, Y. J.; Bao, M.; Qiu, L. H.; Xu, X. F. J. Org. Chem. 2017, 82, 2129.
(g) Du, Q. W.; Neudçrfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379.
(h) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., Int. Ed. 2020, 59, 1.
[15] X-ray data and ORTEP depiction for compounds 3b (CCDC 1870210).
[16] Zhou, H.; Moberg, C. J. Am. Chem. Soc. 2012, 134, 15992.
[17] Lv, J. H.; Zhao, B. L.; Yuan, Y.; Han, Y.; Shi, Z. Z. Nat. Commun. 2020, 11, 1316.
[18] (a) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
(b) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679.
(c) Liu, Y. H.; Zhou, S. L. Org. Lett. 2005, 7, 4609.
[19] Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.; Huffman, J. W. Synthesis 2005, 36, 547.
[20] Nakanishi, W.; Matsuyama, N.; Hara, D.; Saeki, A.; Hitosugi, S.; Seki, S.; Isobe, H. Chem. Asian J. 2014, 9, 1782.
[21] Li, Y.; Gao, L. X.; Han, F. S. Chem. Eru. J. 2010, 16, 7969.
[22] Yao, W. B. CN 107188773, 2017.
Outlines

/