Research Progress on [3+n] (n≥3) Cycloaddition of 1,3-Diploes

  • Yue Guizhou ,
  • Liu Bo
Expand
  • a School of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014;
    b Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064

Received date: 2020-05-30

  Revised date: 2020-06-19

  Online published: 2020-07-01

Supported by

Project supported by the Science and Technology Program of Sichuan Province (No. 2020YFH0129).

Abstract

Versatile heterocyclic skeletons extensively exist in structures of natural products, drug molecules and organic materials, and have been synthesized through various strategies reported in literatures. Among them, the 1,3-dipolar cycloaddition is the most impressive class to build the related heterocycles. In the past, organic chemists generally employed[3+2] cycloaddition of 1,3-dipoles to assemble five-membered rings. As modern chemistry developes, researchers further turn their attention to the[3+3],[3+4],[3+5] and[3+6] cycloadditions, to construct six-, seven-, eight- and bridge-heterocyclic compounds. At present, review articles with topics on 1,3-dipolar cycloaddition mainly focus on[3+2] cycloaddition. Herein, A topic on[3+n] (n ≥ 3) cycloaddition of 1,3-dipoles, with comments on the developed methodologies is present and the outlook in this field is proposed.

Cite this article

Yue Guizhou , Liu Bo . Research Progress on [3+n] (n≥3) Cycloaddition of 1,3-Diploes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3132 -3153 . DOI: 10.6023/cjoc202005092

References

[1] Seeman, J. I.; Restrepo, G. Angew. Chem. Int. Ed. 2020, 59, 12250.
[2] Huisgen, P. D. R. Angew. Chem. Int. Ed. 1963, 2, 565.
[3] Delpierre, G.; Lamchen, M. Quart. Rev. Chem. Soc. 1965, 19, 329.
[4] Stuckwisch, C. G. Synthesis 1973, 469.
[5] Timpe, H.-J. Heteroaromatic N-Imines. In Advances in Heterocyclic Chemistry, Eds:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1974; Vol. 17, p. 213.
[6] Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205.
[7] Tamura, Y.; Ikeda, M. Advances in the Chemistry of Heteroaromatic N-Imines and N-Aminoazonium Salts. In Advances in Heterocyclic Chemistry, Eds.:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1981; Vol. 29, p. 71.
[8] Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
[9] Rodina, L. L.; Kolberg, A.; Schulze, B. Heterocycles 1998, 49, 587.
[10] Zhao B.-X. Prog. Chem. 2000, 12, 77(in Chinese). (赵宝祥, 化学进展, 2000, 12, 77.)
[11] Xu J.-X.; Jiao P. Prog. Chem. 2000, 12, 131(in Chinese). (许家喜, 焦鹏, 化学进展, 2000, 12, 131.)
[12] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
[13] Kotyatkina, A. I.; Zhabinsky, V N.; Khripach, V. A. Russ. Chem. Rev. 2001, 70, 641.
[14] Osborn, H. M. I.; Gemmell, N.; Harwood, L. M. J. Chem. Soc., Perkin Trans. 12002, 2419.
[15] Padwa A.; Pearson W. H. The Chemistry of Heterocyclic Compounds:Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, John Wiley & Sons, New York, 2002.
[16] Schantl, J. G. Sci. Synth. 2004, 27, 731.
[17] Harju, K.; Yli-Kauhaluoma, J. Mol. Div. 2005, 9, 187.
[18] Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.
[19] Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
[20] Hu, X.-F.; Feng, Y.-Q.; Li, X.-F. Chin. J. Org. Chem. 2005, 25, 1(in Chinese). (胡晓芬, 冯亚青, 李筱芳, 有机化学, 2005, 25, 1.)
[21] Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2006, 2873.
[22] Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
[23] Wang, F.; Bai D.-L. Chin. J. Org. Chem. 2006, 26, 9(in Chinese). (王峰, 白东鲁, 有机化学, 2006, 26, 9.)
[24] Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
[25] Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
[26] Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
[27] Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
[28] Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
[29] Yang, J. Synlett 2012, 2293.
[30] Lashgari, N.; Ziarani, G. M. ARKIVOC 2012, i, 277.
[31] Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8, 1021.
[32] Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396.
[33] Han, Q.; Yi, C.; Xiong, X., Chin. J. Org. Chem. 2014, 34, 1092(in Chinese). (韩骞, 易超; 熊兴泉, 有机化学, 2014, 34, 1092.)
[34] Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
[35] Najera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.
[36] Padwa, A.; Bur, S. Recent Advances of 1,3-Dipolar Cycloaddition Chemistry for Alkaloid Synthesis. In Advances in Heterocyclic Chemistry, Eds.:Scriven, E. F. V.; Ramsden C. A., Academic Press, Pittsburgh, 2016, Vol. 119, p. 241.
[37] Sears, J. E.; Boger, D. L. Acc. Chem. Res. 2016, 49, 241.
[38] Meyer, A. G.; Ryan, J. H. Molecules 2016, 21, 935.
[39] Belskaya, N. P.; Bakulev, V. A.; Fan, Z. Chem. Heterocycl. Compd. 2016, 52, 627.
[40] Yuan, B.-B.; Li, Y.-M.; Wang, Q.-L.; Bu, Z.-W. Chem. Res. 2017, 28, 135(in Chinese). (袁贝贝, 李雅宁, 郭娇美, 王琪琳, 卜站伟, 化学研究, 2017, 28, 135.)
[41] Pozgan, F.; Al Mamari, H.; Groselj, U.; Svete, J.; Stefane, B. Molecules 2017, 23, 3.
[42] Xuan, J.; Cao, X.; Cheng, X. Chem. Commun. 2018, 54, 5154.
[43] Li, J.; Ye, Y.; Zhang, Y. Org. Chem. Front. 2018, 5, 864.
[44] Arrastia, I.; Arrieta, A.; Cossío, F. P. Eur. J. Org. Chem. 2018, 5889.
[45] Grošelj, U.; Svete, J.; Mamari, H. H. A.; Požgan, F.; Štefane, B. Chem. Heterocycl. Compd. 2018, 54, 214.
[46] Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis 2018, 4501.
[47] Frankowski, S.; Romaniszyn, M.; Skrzynska, A.; Albrecht, L. Chemistry 2019.
[48] Gulevskaya, A. V.; Nelina-Nemtseva, J. I. Chem. Heterocycl. Compd. 2019, 54, 1084.
[49] Gao, K.; Zhang, Y. G.; Wang, Z.; Ding, H. Chem. Commun. 2019, 55, 1859.
[50] Sukhorukov, A. Adv. Synth. Catal. 2019, 362, 724.
[51] Nebra, N.; García-Álvarez, J. Molecules 2020, 25, 2015.
[52] Zhu, Y.; Huang, Y. Synthesis 2020, 1181.
[53] Brunel, D.; Dumur, F. New J. Chem. 2020, 44, 3546.
[54] Gui, H.-Z.; Wei, Y.; Shi, M. Chem. Asian J. 2020, 15, 1225.
[55] Dhameja, M.; Kumar, H.; Gupta, P. Asian J. Org. Chem. 2020, in press.
[56] Breugest, M.; Reissig, H. U. Angew. Chem. Int. Ed. 2020, 59, 12293.
[57] Wei, L.; Chang, X.; Wang, C.-J. Acc. Chem. Res. 2020, 53, 1084.
[58] Mori, M.; Sugiyama, T.; Nojima, M.; Kusabayashi, S.; Mc- Cullough, K. J. J. Org. Chem. 1992, 57, 2285.
[59] Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504.
[60] Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Syn. Catal. 2020, 362, 1447.
[61] Werz, D. B.; Biju, A. T. Angew. Chem. Int. Ed. 2020, 59, 3385.
[62] Ivanova, O. A.; Trushkov, I. V. Chem. Rec. 2020, 19, 2189.
[63] Wu, L.; Shi, M. Chem. Eur. J. 2010, 16, 1149.
[64] Yang, W.; Wang, T.; Yu, Y.; Shi, S.; Zhang, T.; Hashmi, A. S. K. Adv. Syn. Catal. 2013, 355, 1523.
[65] El Bouakher, A.; Martel, A.; Comesse, S. Org. Biomol. Chem. 2019, 17, 8467.
[66] An, Y.; Xia, H.; Wu, J. Chem. Commun. 2016, 52, 10415.
[67] Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106.
[68] Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. Adv. Syn. Catal. 2017, 359, 3837.
[69] Luo, Y.; Chen, C.-H.; Zhang, J.-Q.; Liang, C.; Mo, D.-L. Synthesis 2019, 52, 424.
[70] Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764.
[71] Sapeta, K.; Kerr, M. A. J. Org. Chem. 2007, 72, 8597.
[72] Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402.
[73] Xu, X.; Zavalij, P. J.; Doyle, M. P. Chem. Commun. 2013, 49, 10287.
[74] Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 5901.
[75] Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669.
[76] Zhou, L.; Xu, B.; Ji, D.; Zhang, Z. M.; Zhang, J. Chin. J. Chem. 2020, in press.
[77] Xu, P. W.; Liu, J. K.; Shen, L.; Cao, Z. Y.; Zhao, X. L.; Yan, J.; Zhou, J. Nat. Commun. 2017, 8, 1619.
[78] Bai, Y.; Fang, J.; Ren, J.; Wang, Z. Chem. Eur. J. 2009, 15, 8975.
[79] Stevens, A. C.; Palmer, C.; Pagenkopf, B. L. Org. Lett. 2011, 13, 1528.
[80] Zhang, Y.; Zhang, J. Chem. Commun. 2012, 48, 4710.
[81] Hu, J.-L.; Wang, L.; Xu, H.; Xie, Z.; Tang, Y. Org. Lett. 2015, 17, 2680.
[82] Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356.
[83] Shintani, R.; Murakami, M.; Hayashi, T. Pure Appl. Chem. 2008, 80, 1135.
[84] Gawade, S. A.; Bhunia, S.; Liu, R. S. Angew. Chem. Int. Ed. 2012, 51, 7835.
[85] Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330.
[86] Li, S.-N.; Yu, B.; Liu, J.; Li, H.-L.; Na, R. Synlett 2016, 27, 282.
[87] Wang, K.-K.; Li, Y.-L.; Wang, Z.-Y.; Hu, M.-W.; Qiu, T.-T.; Zhu, B.-K. Org. Biomol. Chem. 2018, 17, 244.
[88] Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. 2008, 10, 689.
[89] Chagarovskiy, A. O.; Vasin, V. S.; Kuznetsov, V. V.; Ivanova, O. A.; Rybakov, V. B.; Shumsky, A. N.; Makhova, N. N.; Trushkov, I. V. Angew. Chem. Int. Ed. 2018, 57, 10338.
[90] Chagarovskiy, A. O.; Kuznetsov, V. V.; Ivanova, O. A.; Goloveshkin, A. S.; Levina, I. I.; Makhova, N. N.; Trushkov, I. V. Eur. J. Org. Chem. 2019, 2019, 5475.
[91] Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337.
[92] Liang, L.; Huang, Y. Org. Lett. 2016, 18, 2604.
[93] Li, Y.; Zhang, Z. New J. Chem. 2019, 43, 13600.
[94] Liu, J.; Liu, H.; Na, R.; Wang, G.; Li, Z.; Yu, H.; Wang, M.; Zhong, J.; Guo, H. Chem. Lett. 2012, 41, 218.
[95] Li, Z.; Yu, H.; Liu, Y.; Zhou, L.; Sun, Z.; Guo, H. Adv. Synth. Catal. 2016, 358, 1880.
[96] Qian, Y.; Zavalij, P. J.; Hu, W.; Doyle, M. P. Org. Lett. 2013, 15, 1564.
[97] Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52.
[98] Ansari, A. J.; Pathare, R. S.; Kumawat, A.; Maurya, A. K.; Verma, S.; Agnihotri, V. K.; Joshi, R.; Metre, R. K.; Sharon, A.; Pardasani, R. T.; Sawant, D. M. New J. Chem. 2019, 43, 13721.
[99] Zhu, G.; Sun, W.; Wu, C.; Li, G.; Hong, L.; Wang, R. Org. Lett. 2013, 15, 4988.
[100] Fang, X.; Li, J.; Tao, H.-Y.; Wang, C.-J. Org. Lett. 2013, 15, 5554.
[101] Du, J.; Xu, X.; Li, Y.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004.
[102] Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654.
[103] Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.
[104] Efremova, M. M.; Kostikov, R. R.; Stepakov, A. V.; Panikorovsky, T. L.; Shcherbakova, V. S.; Ivanov, A. V.; Molchanov, A. P. Tetrahedron 2017, 73, 671.
[105] T. P.; Krishna, A. V.; Ramachary, D. B. Org. Lett. 2018, 20, 6979.
[106] Fang, Q-Y.; Jin, H-S.; Wang, R-B.; Zhao, L-M. Chem. Commun. 2019, 55, 10587.
[107] Liu, Y.; Zhen, W.; Dai, W.; Wang, F.; Li, X. Org. Lett. 2013, 15, 874.
[108] Moghaddam, F. M.; Eslami, M.; Siahpoosh, A.; Golfam, H. New J. Chem. 2019, 42, 10318.
[109] Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X. Org. Lett. 2017, 19, 646.
[110] Hu, S.; Zhang, J.; Jin, Q. New J. Chem. 2018, 42, 7025.
[111] Zhou, Y. Y.; Li, J.; Ling, L.; Liao, S. H.; Sun, X. L.; Li, Y. X.; Wang, L. J.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 1452.
[112] Guo, H.; Liu, H.; Zhu, F.-L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X.-P.; Wang, M. Angew. Chem. Int. Ed. 2013, 52, 12641.
[113] Zhang, L.; Liu, H.; Qiao, G.; Hou, Z.; Liu, Y.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2015, 137, 4316.
[114] Du, Q.; Neudoerfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379.
[115] Xu, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. Chem. Commun. 2013, 49, 2762.
[116] Jing, C.; Na, R.; Wang, B.; Liu, H.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J.; Kwon, O.; Guo, H. Adv. Synth. Catal. 2012, 354, 1023.
[117] Li, Z.; Yu, H.; Feng, Y.; Hou, Z.; Zhang, L.; Yang, W.; Wu, Y.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 34481.
[118] Hu, X.-Q.; Chen, J.-R.; Gao, S.; Feng, B.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2013, 49, 7905.
[119] Li, Z.; Li, S.; Kan, T.; Wang, X.; Xin, X.; Hou, Y.; Gong, P. Adv. Synth. Catal. 2020, 362, 2626.
[120] Water, R. W. V. D.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367.
[121] Grotenhuis, C. T.; Bruin, B. D. Synlett 2018, 29, 2238.
[122] Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.
[123] Mei, G.-J.; Zhu, Z.-Q.; Zhao, J.-J.; Bian, C.-Y.; Chen, J.; Chen, R.-W.; Shi, F. Chem. Commun. 2017, 53, 2768.
[124] Chen, L.; Yang, G.; Wang, J.; Jia, Q.; Wei, J.; Du, Z. RSC Adv. 2015, 5, 76696.
[125] Jin, Q.; Zhang, J.; Jiang, C.; Zhang, D.; Gao, M.; Hu, S. J. Org. Chem. 2018, 83, 8410.
[126] Li, C.; Wang, C. S.; Li, T. Z.; Mei, G. J.; Shi, F. Org. Lett. 2019, 21, 598.
[127] Dai, W.; Li, C.; Liu, Y.; Han, X.; Li, X.; Chen, K.; Liu, H. Org. Chem. Front. 2020, 7, 2612..
[128] Wei, L.; Wang, Z. F.; Yao, L.; Qiu, G.; Tao, H.; Li, H.; Wang, C. J. Adv. Syn. Catal. 2016, 358, 3955.
[129] Yuan, C.; Wu, Y.; Wang, D.; Zhang, Z.; Wang, C.; Zhou, L.; Zhang, C.; Song, B.; Guo, H. Adv. Syn. Catal. 2018, 360, 652.
[130] Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 1258.
[131] Wu, Y.; Qiao, G.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 84290.
[132] Shi, F.; Zhu, R. Y.; Dai, W.; Wang, C. S.; Tu, S. J. Chem.-Eur. J. 2014, 20, 2597.
[133] Yuan, C.; Liu, H.; Gao, Z.; Zhou, L.; Feng, Y.; Xiao, Y.; Guo, H., Org. Lett. 2015, 17, 26.
[134] Yang, W.-L.; Li, C.-Y.; Qin, W.-J.; Tang, F.-F.; Yu, X.; Deng, W.-P. ACS Catal. 2016, 6, 5685.
[135] Kim, S.; Kim, S.-G. Asian J. Org. Chem. 2019, 8, 1621.
[136] Dai, Z.; Zhu, J.; Wang, J.; Su, W.; Yang, F.; Zhou, Q. Adv. Synth. Catal. 2019, 362, 545.
[137] Zhao, H.-W.; Wang, L.-R.; Guo, J.-M.; Ding, W.-Q.; Song, X.-Q.; Wu, H.-H.; Tang, Z.; Fan, X.-Z.; Bi, X.-F. Adv. Synth. Catal. 2019, 361, 4761.
[138] Niu, B.; Wu, X. Y.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4859.
[139] Wu, Y.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Huang, J.; Wang, M.; Guo, H. RSC Adv. 2016, 6, 73547.
[140] Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2012, 51, 9512.
[141] He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 2934.
[142] Teng, H. L.; Yao, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 4075.
[143] Li, Q. H.; Wei, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 8685.
[144] He, Z. L.; Sheong, F. K.; Li, Q. H.; Lin, Z.; Wang, C. J. Org. Lett. 2015, 17, 1365.
[145] Liu, H.; Wu, Y.; Zhao, Y.; Li, Z.; Zhang, L.; Yang, W.; Jiang, H.; Jing, C.; Yu, H.; Wang, B.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2014, 136, 2625.
[146] Petzold, M.; Jones, P. G.; Werz, D. B. Angew. Chem. Int. Ed. 2019, 58, 6225.
[147] Petzold, M.; Günther, A.; Jones, P. G., Werz, D. B. Chem.-Eur. J. 2020, in press.
[148] Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem. Int. Ed. 2020, 59, 5536.
[149] McLeod, D.; Cherubini-Celli, A.; Sivasothirajah, N.; McCulley, C. H.; Christensen, M. L.; Jørgensen, K. A. Chem.-Eur. J. 2020, 26, 11417.
[150] Garve, L. K.; Petzold, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2016, 18, 564.
[151] Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106.
[152] Pearson, W. H.; Fang, W.; Kampf, J. W. J. Org. Chem. 1994, 59, 2682.
[153] Scadeng, O.; Ferguson, M. J.; West, F. G. Org. Lett. 2011, 13, 114.
[154] Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896.
[155] Xu, X.; Zhang, K.; Li, P.; Yao, H.; Lin, A. Org. Lett. 2018, 20, 1781.
[156] D'Souza, A. M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L. S.-M.; Meyer, A. G.; Holmes, A. B.; White, J. M.; Ryan, J. H. Org. Lett. 2011, 13, 486.
[157] D'Souza, A. M.; Rivinoja, D. J.; Mulder, R. J.; White, J. M.; Meyer, A. G.; Hyland, C. J. T.; Ryan, J. H. Aust. J. Chem. 2018, 71, 690.
[158] Soeta, T.; Tamura, K.; Ukaji, Y. Org. Lett. 2012, 14, 1226.
[159] Wu, Y.; Tian, B.; Hu, C.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, S. Org. Biomol. Chem. 2019, 17, 5505.
[160] Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2019, 38, 151.
[161] Trost, B. M.; Zuo, Z. Angew. Chem. Int. Ed. 2020, 59, 1243.
[162] Zheng, P.; Li, C.; Mou, C.; Pan, D.; Wu, S.; Xue, W.; Jin, Z.; Chi, Y. R. Asian J. Org. Chem. 2019, 8, 1067.
Outlines

/