Palladium-Catalyzed Allylic Alkylation Reaction of α-Substituted Benzyl Nitriles with Branched Allyl Carbonates

  • Zhang Gaopeng ,
  • Jiang Yangjie ,
  • Ding Changhua ,
  • Hou Xuelong
Expand
  • a State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b Department of Chemistry, Shanghai University, Shanghai 200032;
    c Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    d University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-05

  Revised date: 2020-06-23

  Online published: 2020-07-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21532010, 21772215), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20030100), the Chinese Academy of Sciences, the Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong.

Abstract

Pd-catalyzed allylic alkylation reaction of α-substituted benzyl nitriles with branched allyl carbonates in the presence of bulkier N-heterocyclic carbene ligand was reported, which provided the corresponding allylated products in good yield with high regio- and diastereo-selectivity.

Cite this article

Zhang Gaopeng , Jiang Yangjie , Ding Changhua , Hou Xuelong . Palladium-Catalyzed Allylic Alkylation Reaction of α-Substituted Benzyl Nitriles with Branched Allyl Carbonates[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3399 -3409 . DOI: 10.6023/cjoc202006007

References

[1] (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
(b) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(c) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
[2] (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis, Vol. 2, Eds.:Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer- Verlag, Berlin, 1999, p. 833.
(b) Trost, B. M. Chem. Rev. 1996, 96, 395.
(c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(d) Ding, C.-H.; Hou, X.-L. In Comprehensive Organic Synthesis, 2nd ed., Vol. 4, Eds.:Molander, G. A.; Knochel, P., Elsevier, Oxford, 2014, p. 648.
(e) Zhang, J.-L.; Jiang, G.-X. Acta Chim. Sinica 2018, 76, 890.
[3] (a) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem. 1980, 45, 5193.
(b) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A. Angew. Chem., Int. Ed. 1992, 31, 234.
(c) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A.; Menzer, S.; Williams, D. J. Angew. Chem., Int. Ed. 1995, 34, 100.
[4] (a) Hayashi, T.; Konishi, M.; Yokota, K.; Kumada, M. J. Organomet. Chem. 1985, 285, 359.
(b) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T. Organometallics 1998, 17, 4835.
(c) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686.
(d) Le, H.; Batten, A.; Morken, J. P. Org. Lett. 2014, 16, 2096.
(e) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
(f) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013, 135, 12536.
(g) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180.
(h) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Nat. Commun. 2016, 7, 11806.
(i) Yu, F.-L.; Bai, D.-C.; Liu, X.-Y.; Jiang, Y.-J.; Ding, C.-H.; Hou, X.-L. ACS Catal. 2018, 8, 3317.
[5] (a) Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2591.
(b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759.
(c) Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
(d) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.; Dai, L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544.
(e) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718.
(f) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741.
(g) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
(h) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(i) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
(j) Sha, S.-C.; Zhang, J.-D.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2013, 135, 17602.
[6] (a) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. J. Org. Chem. 1985, 50, 1523.
(b) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309.
(c) Evans, P. A.; Oliver, S.; Chae, J. J. Am. Chem. Soc. 2012, 134, 19314.
(d) Maji, T.; Tunge, J. K. Org. Lett. 2014, 16, 5072.
(e) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 6156.
(f) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 15374.
[7] (a) Bai, D.-C.; Liu, X.-Y.; Li, H.; Ding, C.-H.; Hou, X.-L. Chem. Asian J. 2017, 12, 212.
(b) Zhang, G.-P.; Huang S.; Jiang, Y.-J.; Liu, X.-Y.; Ding, C.-H.; Wei, Y.; Hou, X.-L. Chem. Commun. 2019, 55, 6449.
[8] Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C. Top. Organomet. Chem. 2012, 38, 1.
[9] (a)Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura. T. Organometallics 1998, 17, 4835.
(b) Bai, D. C.; Wang, W. Y.; Ding, C. H.; Hou, X. L. Synlett 2015, 26, 1510.
[10] Triandafillidi, I.; Kokotou, M. G.; Kokotos, C. G. Org. Lett. 2018, 20, 36.
[11] (a) Yuan, Q.-J.; Yao, K.; Liu, D.-L.; Zhang, W.-B. Chem. Commun. 2015, 51, 11834.
(b) Hayashi, M.; Brown, L. E.; Porco, Jr. J. A. Eur. J. Org. Chem. 2016, 4800.
Outlines

/