Structural Modifications and Chiral Applications of Brucine

  • Dong Ziyang ,
  • Yang Zhanhui ,
  • Xu Jiaxi
Expand
  • Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029

Received date: 2020-04-29

  Revised date: 2020-06-17

  Online published: 2020-07-09

Supported by

Project supported by the Beijing Natural Science Foundation (No. 2202041) and the National Natural Science Foundation of China (No. 21602010).

Abstract

The recent advances on the structural modifications and chiral applications of Brucine are reviewed. Brucine is a naturally occuring molecule with multiple functional groups and a complex stereochemical structure. Selective structural modification of brucine is challenging, and a variety of methods to achieve selective modifications at its specific site are available. The aryl moiety undergoes demethoxypentafluorophenylation, and the amide moiety undergoes the condensation with primary amine, deoxycyanation, deoxygenative reduction, and α-oximation. The tertiary amine moiety undergoes N-oxidation, formal carbene insertions of C-N or α-C-H bonds, three-component reactions with benzynes and phenols, N-amidation with nitrene, and N-alkylation with halogenated hydrocarbons. The C=C subunit undergoes dihydroxylation and hydrogenation, while the ether subunit undergoes hydrogenative cleavage. The modified structures have high potential medicinal values. As a chiral resolution reagent, brucine has been widely used in the resolution of racemic carboxylic acids, phosphoric or phosphonic acids, phenols, alcohols and some drugs. Additionally, brucine and its modified structures also find applications as chiral auxiliaries, chiral catalysts or chiral ligands in asymmetric synthesis and catalysis.

Cite this article

Dong Ziyang , Yang Zhanhui , Xu Jiaxi . Structural Modifications and Chiral Applications of Brucine[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4101 -4121 . DOI: 10.6023/cjoc202004049

References

[1] (a) Hai, P.; Wang, C.; Luo, G. Chin. J. Pharm. 2016, 47, 1394(in Chinese). (海平, 王慧春, 骆桂法, 中国医药工业杂志, 2016, 47, 1394.)
(b) Zhang, J.-J.; Yang, Y.-J.; Qi, L.-P.; Dong, Y.-Y.; Zhang, J.; Li, R.-K.; Liu, Y.-M. Rheum. Arthritis 2017, 6, 38(in Chinese). (张景姣, 杨艳娇, 祁利平, 董艳艳, 张健, 李瑞柯, 刘雅敏, 风湿病与关节炎, 2017, 6, 38.)
(c) Duan, C.-X.; Guo, C.-J. Chin. J. Pharm. Anal. 2018, 38, 331(in Chinese). (段存贤, 郭承军, 药物分析杂志, 2018, 38, 331.)
(d) Zhou, S.; Zhou, H.; Chen, Y.; Meng, F. Acta Chin. Med. 2018, 33, 1302(in Chinese). (周淑娟, 周红敏, 陈岩岩, 孟菲, 中医学报, 2018, 33, 1302.)
(e) Liu, M.; Cui, X.; Shi, H.; Wang, X.; Chen, Z.; Niu, A.; Gao, R.; Cao, X. China Pharm. 2019, 30, 2980(in Chinese). (刘满军, 崔小敏, 石会丽, 王晓萍, 陈志永, 牛安琦, 高蓉, 曹小平, 中国药房, 2019, 30, 2980.)
[2] (a) Wu, X.-J.; Ma, F.-S.; Yu, Y. Lishizhen Med. Mater. Med. Res. 2016, 27, 2145(in Chinese). (吴小娟, 马凤森, 喻炎, 时珍国医国药, 2016, 27, 2145.)
(b) Yan, J.; Lin, J.-T.; Liu, Z.-Q.; Zhen, X.-Y. Chin. J. Pharm. Anal. 2020, 40, 132(in Chinese). (闫静, 林佳娣, 刘志强, 甄晓宇, 药物分析杂志, 2020, 40, 132.)
(c) Dong, Z.; Yang, Z.; Xu, J. Univ. Chem. 2020, DOI:10.3866/PKU.DXHX202005056(in Chinese). (董子阳, 杨占会, 许家喜, 大学化学, 2020, DOI:10.3866/PKU. DXHX202005056.)
[3] Wormley, T. Micro-chemistry of Poisons Including Their Physiological, Pathological, and Legal Relations:Adapted to the Use of the Medical Jurist, Physician, and General Chemist, Wood, W., New York, 1869.
[4] Buckingham, J. Bitter Nemesis:The Intimate History of Strychnine, CRC Press, Boca Raton, USA, 2007, p. 225.
[5] Frédérich, M.; Choi, Y. H.; Verpoorte, R. Planta Med. 2003, 69, 1169.
[6] Malone, M. H.; St. John-Allan, K. M.; Bejar, E. J. Ethnopharmacol. 1992, 35, 295.
[7] (a) Ren, J.; Zhang, X.; Chu, Z. J. Liaoning Univ. Tradit. Chin. Med. 2016, 18, 221(in Chinese). (任佳佳, 张学顺, 褚志杰, 辽宁中医药大学学报, 2016, 18, 221.)
(b) Zhang, M.; Wang, C.; Wen, Q.; Fang, P.-F. Chin. J. Clin. Pharmacol. Ther. 2017, 33, 2282(in Chinese). (张敏, 王超, 温菁, 方平飞, 中国临床药理学杂志, 2017, 33, 2282.)
[8] Shiba, T. Kagaku Sosetsu 1976, 14, 129.
[9] (a) Yin, W.; Wang, T.-S.; Yin, F.-Z.; Cai, B.-C. J. Ethnopharmacol. 2003, 88, 205.
(b) Li, G.; Zhang, C.; Li, Z. Famous Doctor 2018, 147(in Chinese). (李国璋, 张超, 李泽, 名医, 2018, 147.)
(c) Li, Y.-F.; Ren, W. Chin. J. Pain Med. 2019, 25, 94(in Chinese). (李永丰, 任维, 中国疼痛医学杂志, 2019, 25, 94.)
(d) Li, Y.; Zhou, J. Chin. J. Mod. Appl. Pharm. 2019, 36, 2805(in Chinese). (李阳杰, 周敬, 中国现代应用药学, 2019, 36, 2805.)
(e) Shi, X.; Zhu, M.; Kang, Y.; Yang, T.; Chen, X.; Zhang, Y. Phytomedicine 2018, 241.
(f) Suo, M.; Li, P.; Zhang, M.; Zhu, Y.; Xu, M.; Li, W. China Oncol. 2018, 28, 241(in Chinese). (索明珠, 李平, 张梅, 朱耀东, 徐梦冉, 李为雨, 中国癌症杂志, 2018, 28, 241.)
(g) Xu, M.; Li, P. Acta Univ. Med. Anhui 2020, 55, 195(in Chinese). (徐萌, 李平, 安徽医科大学学报, 2020, 55, 195.)
[10] (a) Zhang, M.; Wang, C.; Cai, H.-L.; Wen, J.; Fang, P.-F. Curr. Med. Sci. 2019, 39, 890.
(b) Wu, X.; Ma, F.; Zheng, G. Pharmacol. Clin. Chin. Mater. Med. 2016, 32, 231(in Chinese). (吴小娟, 马凤森, 郑高利, 中药药理与临床, 2016, 32, 231.)
(c) Li, S.; Wang, X.-P. Int. J. Nanomed. 2017, 12, 5797.
(d) Qin, J.; Yang, L.; Sheng, X.; Sa, Z.; Huang, T.; Li, Q.; Gao, K.; Chen, Q.; Ma, J.; Shen, H. Oncol. Lett. 2018, 15, 6137.
(e) Ma, J.-B.; Qiu, H.-W.; Rui, Q.-H.; Liao, Y.-F.; Chen, Y.-M.; Xu, J.; Zhang, Y.; Zhu, Y.; Zhao, Y.-G. Anal. Chim. Acta 2018, 1020.
[11] (a) Cai, B.-C.; Hattori, M.; Namba, T. Chem. Pharm. Bull. 1990, 38, 1295.
(b) Wang, D.-D.; Li, J.-S.; Cai, B.-C. Chin. Arch. Tradit. Chin. Med. 2009, 27, 435(in Chinese). (王丹丹, 李俊松, 蔡宝昌, 中华中医药学刊, 2009, 27, 435.)
(c) Chen, X.; Liu, L.; Zhu, W.; Chen, H.; Guan, Y. Jiangxi J. Tradit. Chin. Med. 2018, 49, 63(in Chinese). (陈谢谢, 刘丽丽, 朱卫丰, 陈丽华, 管咏梅, 江西中医药, 2018, 49, 63.)
[12] (a) Wu, F.; Li, A.; Guo, J. Pharm. Today 2017, 27, 355(in Chinese). (吴菲, 李阿荣, 郭洁文, 今日药学, 2017, 27, 355.)
(b) Wang, M.; Qi, W. Acta Chin. Med. 2017, 32, 1236(in Chinese). (王明昭, 齐武强. 中医学报, 2017, 32, 1236.)
(c) Nie, Y.; Cao, L.; Xu, Z.; Xin, B. World Latest Medicine Information 2018, 18, 155(in Chinese). (聂彦彦, 曹璐璐, 徐志龙, 辛波, 世界最新医学信息文摘, 2018, 18, 155.)
(d) Zhang, Y.-J.; Zhang, Z.-P.; Zhai, J.-L.; Tian, L. Guangzhou Chem. Ind. 2019, 47, 121(in Chinese). (张云静, 张自品, 张雪燕, 翟佳丽, 田蕾, 广州化工, 2019, 47, 121.)
[13] Liu, S.; Li, H.; Jiang, M.; Li, P. J. Instrum. Anal. 1998, 17, 5(in Chinese). (刘守清, 李慧玲, 蒋勉, 李培标, 分析测试学报, 1998, 17, 5.)
[14] (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383.
(b) Nicolaou, K. C.; Rigol, S. Angew. Chem. Int. Ed. 2019, 58, 11206.
[15] (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2017, 46, 1760.
(b) White, M. C.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 13988.
(c) Richardson, J.; Sharman, G.; Martínez-Olid, F.; Cañellas, S.; Gomez, J. E. React. Chem. Eng. 2020, 5, 779.
(d) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature (London, U. K.) 2020, 580, 621.
[16] (a) Mohsen, A. M. Y.; Mandour, Y. M.; Sarukhanyan, E.; Breitinger, U.; Villmann, C.; Banoub, M. M.; Breitinger, H.-G.; Dandekar, T.; Holzgrabe, U.; Sotriffer, C.; Jensen, A. A. Zlotos, D. P. J. Nat. Prod. 2016, 79, 2997.
(b) Svejstrup, T. D.; Ruffoni, A.; Julia, F.; Aubert, V. M.; Leonori, D. Angew. Chem. Int. Ed. 2017, 56, 14948.
(c) Wang, J.; Li, R.; Dong, Z.; Liu, P.; Dong, G. Nat. Chem. 2018, 10, 866.
(d) Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
(e) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature (London, U. K.) 2019, 567, 223.
(f) Nishii, Y.; Ikeda, M.; Hayashi, Y.; Kawauchi, S.; Miura, M. J. Am. Chem. Soc. 2020, 142, 1621.
[17] Meyer, A. U.; Slanina, T.; Yao, C.-J.; König, B. ACS Catal. 2016, 6, 369.
[18] (a) Borie, C.; Mondal, S.; Arif, T.; Briand, M.; Lingua, H.; Dumur, F.; Gigmes, D.; Stocker, P.; Barbarat, B.; Robert, V.; Nicoletti, C.; Olive, D.; Maresca, M.; Nechab, M. Eur. J. Med. Chem. 2018, 148, 306.
(b) Cierpiał, T.; Kiełbasiński, P.; Kwiatkowska, M.; Łyzwa, P.; Lubelska, K.; Kuran, D.; Dąbrowska, A.; Kruszewska, H.; Mielczarek, L.; Chilmonczyk, Z.; Wiktorska, K. Bioorg. Chem. 2020, 94, 103454.
[19] (a) Otsuka, S.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J 2015, 21, 14703.
(b) Chen, W.; Hooper, T. N.; Ng, J.; White, A. J. P.; Crimmin, M. R. Angew. Chem. Int. Ed. 2017, 56, 12687.
(c) Shigeno, M.; Okawa, T.; Imamatsu, M.; Nozawa-kumada, K.; Kondo, Y. Chem.-Eur. J. 2019, 25, 10294.
[20] (a) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Pool-Gomez, E.; Camacho-Luis, A.; Rosas-Nexticapan, M.; Lopez-Ramos, M.; May-Gil, I.; Sarao-Alvarez, A.; Naal-Dzib, C. Asian J. Chem. 2013, 25, 6783.
(b) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Rosas-Nexticapa, M.; Garcia-Cervera, E.; Pool-Gomez, E.; Lopez-Ramos, M.; Hau-Heredia, L.; Sarabia-Alcocer, B. J. Chem. 2014, 757953/1-757953/10.
(c) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Gomez, E. P.; Rosas-Nexticapa, M.; Lopez-Ramos, M. Asian J. Chem. 2014, 26, 4959.
[21] Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655.
[22] (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
(b) Klein, B. A.; Robertson, I. M.; Reiz, B.; Kampourakis, T.; Li, L.; Sykes, B. D. ACS Med. Chem. Lett. 2019, 10, 1007.
(c) Lameira, J.; Bonatto, V.; Cianni, L.; dos Reis Rocho, F.; Leitão, A.; Montanari, C. A. Phys. Chem. Chem. Phys. 2019, 21, 24723.
[23] (a) Qi, L.; Hu, K.; Yu, S.; Zhu, J.; Cheng, T.; Wang, X.; Chen, J.; Wu, H. Org. Lett. 2017, 19, 218.
(b) Seo, B.; Kim, Y. G.; Lee, P. H. Org. Lett. 2016, 18, 5050.
(c) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedron 2018, 74, 773.
[24] Bender, T. A.; Payne, P. R.; Gagné, M. R. Nat. Chem. 2018, 10, 85.
[25] Zlotos, D. P. Buller, S. Holzgrabea, U. Mohr, K. Bioorg. Med. Chem. 2003, 11, 2627.
[26] Cai, B.-C.; He, Y.-W.; Zhang, Y.-Q.; Wu, H. Chin. Pharm. J. 1994, 29, 169(in Chinese). (蔡宝昌, 何亚维, 张永清, 吴皓, 中国药学杂志, 1994, 29, 169.)
[27] Arnone, A.; Metrangolo, P.; Novo, B.; Resnati, G. Tetrahedron 1998, 54, 7831.
[28] Jousseaume, B.; Chanson, E. Synthesis 1987, 155.
[29] Chen, J.; Lü, P.; Zhou, X.-J. Chin. J. Org. Chem. 1987, 7, 459(in Chinese). (陈坚, 吕平, 周洵钧, 有机化学, 1987, 7, 459.)
[30] Oh, K.; Knabe, W. E. Tetrahedron 2009, 65, 2966.
[31] Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L. Org. Lett. 2012, 14, 4626.
[32] He, J.; Hamann, L. G.; Davies, H. M. L.; Beckwith, R. E. J; Nat. Commun. 2015, 6, 5943.
[33] Brandhofer, T.; Gini, A.; Stockerl, S.; Piekarski, D. G.; Mancheño, O. G. J. Org. Chem. 2019, 84, 12992.
[34] Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523.
[35] Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510.
[36] Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562.
[37] Dong, Q.; Anderson, C. E.; Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 5681.
[38] Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Álvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Pérez, P. J. J. Am. Chem. Soc. 2017, 139, 2216.
[39] (a) Gharagozloo, P.; Lazareno, S.; Popham, A.; Birdsall, N. J. M. J. Med. Chem. 1999, 42, 438.
(b) Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; Kobayashi, S.; Lazareno, S.; Sugimoto, M. Mol. Pharmacol. 1999, 55, 778.
[40] (a) Král, V.; Pataridis, S.; Setnička, V.; Záruba, K.; Urbanová, M.; Volka, K. Tetrahedron 2005, 61, 5499.
(b) Kejík, Z.; Záruba, K.; Michalík, D.; Šebek, J.; Dian, J.; Pataridis, S.; Volka, K.; Král, V. Chem. Commun. (Cambridge, U. K.) 2006, 1533.
(c) Rezanka, P.; Záruba, K.; Král, V. Tetrahedron Lett. 2008, 49, 6448.
(d) Záruba, K.; Králová, J.; Řezanka, P.; Poučková, P.; Veverková, L.; Král, V. Org. Biomol. Chem. 2010, 8, 3202.
[41] (a) Kim, H. Y.; Shi, H.-J.; Knabe, W. E.; Oh, K. Angew. Chem. Int. Ed. 2009, 48, 7420.
(b) Kim, H. Y.; Oh, K. Org. Lett. 2009, 11, 5682.
(c) Kim, H. Y.; Kim, S.; Oh, K. Angew. Chem. Int. Ed. 2010, 49, 4476.
[42] Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.
[43] Karimov, R. R.; Sharma, A.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 715.
[44] (a) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579.
(b) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120.
(c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(d) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem.-Eur. J. 2012, 18, 8583.
(e) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577.
(f) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881.
[45] Lichosyt, D.; Zhang, Y.; Hurej, K.; Dydio, P. Nat. Catal. 2019, 2, 114.
[46] Wren, H.; Williams, H. J. Chem. Soc., Trans. 1916, 109, 572.
[47] Abderhalden, E.; Faust, W.; Haase, E. Z. Physiol. Chem. 1934, 228, 187.
[48] Toki, K. Bull. Chem. Soc. Jpn. 1958, 31, 333.
[49] (a) Toda, F.; Tanaka, K.; Ueda, H. Tetrahedron Lett. 1981, 22, 4669.
(b) Toda, F.; Tanaka, K.; Mori, K. Chem. Lett. 1983, 827.
[50] Tanner, D. D.; Ruo, T. C. S.; Meintzer, C. P. J. Org. Chem. 1985, 50, 2573.
[51] Jaen, J. C. e-EROS Encycl. Reagents Org. Synth. 2001, doi. org/10. 1002/047084289X. rb334.
[52] (a) Hagishita, S.; Kuriyama, K.; Hayashi, M.; Nakano, Y.; Shingu, K.; Nakagawa, M. Bull. Chem. Soc. Jpn. 1971, 44, 496.
(b) Warr, R. J.; Willis, A. C.; Wild, S. B. Inorg. Chem. 2008, 47, 9351.
[53] (a) Yoshida, S.; Kasai, M.; Kimura, T.; Akiba, T.; Takahashi, T.; Sakamoto, S. Org. Process Res. Dev. 2012, 16, 654.
(b) Moritomo, A.; Yamada, H.; Matsuzawa-Nomura, T.; Watanabe, T.; Itahana, H.; Oku, M.; Akuzawa, S.; Okada, M. Bioorg. Med. Chem. 2014, 22, 6026.
[54] (a) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Chem.-Eur. J. 2004, 10, 3931.
(b) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Eur. J. Org. Chem. 2005, 3536.
(c) Tsunoda, Y.; Fukuta, K.; Imamura, T.; Sekiya, R.; Furuyama, T.; Kobayashi, N.; Haino, T. Angew. Chem. Int. Ed. 2014, 53, 7243.
[55] (a) Polavarapu, P. L.; Petrovic, A. G.; Vick, S. E.; Wulff, W. D.; Ren, H.; Ding, Z.; Staples, R. J. Org. Chem. 2009, 74, 5451.
(b) Yang, Z. Univ. Chem. 2020, 35, 185(in Chinese). (杨占会, 大学化学, 2020, 35, 185)
[56] Záruba, K.; Král, V. Tetrahedron:Asymmetry 2002, 13, 2567.
[57] (a) Tanaka, K.; Oda, S.; Nishihote, S.; Hirayama, D.; Urbanczyk-Lipkowska, Z. Tetrahedron:Asymmetry 2009, 20, 2612.
(b) Sundar, M. S.; Bedekar, A. V. RSC Adv. 2016, 6, 46258.
[58] Röehrich, T.; Abu Thaher, B.; Manicone, N.; Otto, H.-H. Monatsh. Chem. 2004, 135, 979.
[59] Piwowarczyk, K.; Zawadzka, A.; Roszkowski, P.; Szawkalo, J.; Leniewski, A.; Maurin, J. K.; Kranz, D.; Czarnocki, Z. Tetrahedron:Asymmetry 2008, 19, 309.
[60] Doyle, M. P.; Morgan, J. P.; Fettinger, J. C.; Zavalij, P. Y.; Colyer, J. T.; Timmons, D. J.; Carducci, M. D. J. Org. Chem. 2005, 70, 5291.
[61] White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488.
[62] Carlier, P. R.; Zhang, Y. Org. Lett. 2007, 9, 1319.
[63] Mo, F.; Dong, G. Science (Washington, DC, U. S.) 2014, 345, 68.
[64] Chen, J.; Kilpatrick, B.; Oliver, A. G.; Wulff, J. E. J. Org. Chem. 2015, 80, 8979.
[65] Chen, J.; Sun, X.; Oliver, A. G.; Wulff, J. E. Can. J. Chem. 2017, 95, 234.
[66] Zhu, J.; Yuan, Y.; Wang, S.; Yao, Z.-J. ACS Omega 2017, 2, 4665.
[67] Kenyon, J. Org. Synth. 1926, 6, 68.
[68] Hartmann, R. W.; Batzl, C.; Pongratz, T. M.; Mannschreck, A. J. Am. Chem. Soc. 1992, 35, 2210.
[69] (a) Poupaert, J. H.; Cavalier, R.; Claesen, M. H.; Dumont, P. A. J. Med. Chem. 1975, 18, 1268.
(b) Riedner, J.; Vogel, P. Tetrahedron:Asymmetry 2004, 15, 2657.
[70] Laursen, J. B.; Jorgensen, C. G.; Nielsen, J. Bioorg. Med. Chem. 2003, 11, 723.
[71] Ashcroft, C. P.; Challenger, S.; Clifford, D.; Derrick, A. M.; Hajikarimian, Y.; Slucock, K.; Silk, T. V.; Thomson, N. M.; Williams, J. R. Org. Process Res. Dev. 2005, 9, 663.
[72] Dung, P. T.; Trung, T. Q.; Kim, K. H. Arch. Pharmacal Res. 2009, 32, 1425.
[73] Kuo, L. Y.; Glazier, S. K. Inorg. Chem. 2012, 51, 328.
[74] (a) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Angew. Chem. Int. Ed. 2006, 45, 5859.
(b) Hazin, K.; Patrick, B. O.; Gates, D. P. Inorg. Chem. 2019, 58, 188.
[75] (a) Matsumoto, K.; Uchida, T. Chem. Lett. 1981, 1673.
(b) Ikemoto, T.; Nagata, T.; Yamano, M.; Ito, T.; Mizuno, Y.; Tomimatsu, K. Tetrahedron Lett. 2004, 45, 7757.
[76] Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365.
[77] (a) Marckwald, W. Ber. 1904, 37, 349.
(b) Toussaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1987, 28, 539.
[78] (a) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. J. Chem. Soc., Chem. Commun. 1985, 23, 1670.
(b) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. Tetrahedron 1988, 44, 5243.
[79] Spek, A. L.; Voorbergen, P.; Schat, G.; Blomberg. C.; Bickelhaupt, F. J. Organomet. Chem. 1974, 77, 147.
[80] (a) Kolesińska, B.; Kamiński, Z. J. Org. Lett. 2009, 11, 765.
(b) Kolesińska, B.; Kasperowicz, K.; Sochacki, M.; Mazur, A.; Jankowski, S.; Kamiński, Z. J. Tetrahedron Lett. 2010, 51, 20.
[81] Kinoshita, H.; Ihoriya, A.; Ju-Ichi, M.; Kimachi, T. Synlett 2010, 2330.
[82] Nicolaou, K. C.; Liu, G.; Beabout, K.; McCurry, M. D.; Shamoo, Y. J. Am. Chem. Soc. 2017, 139, 3736.
Outlines

/