Progress in Multicomponent Reactions Involving 1,3-Indanedione

  • Sun Jing ,
  • Cao Jun ,
  • Han Ying ,
  • Yan Chao-Guo
Expand
  • College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002

Received date: 2020-05-02

  Revised date: 2020-06-11

  Online published: 2020-07-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572196).

Abstract

1,3-Indanedione is one of typical cyclic 1,3-dicarbonyl compounds with one methylene unit, two carbonyl groups and fused phenyl ring. Thus, it has three contiguous reactive electrophilic and nucleophilic sites. On the other hand, 1,3-indanedione undergoes homopolymerization to form several cyclic compounds with polycarbonyl groups under acidic or basic medium. 2-Arylidene-1,3-indanediones derived from condensation of aromatic aldehydes with 1,3-indanedione are also reactive α,β-unsaturated carbonyl compounds. Therefore, 1,3-indanedione has diverse reactivities and is the key substrate in domino and multicomponent reactions. It has been widely employed to construct various spiro, bridged and fused cyclic compounds. The recent achievements on multicomponent reactions involving 1,3-indanedione from the structures of the target compounds and the important applications on the syntheses of biologically important indanone-containing carbocyclic and heterocyclic compounds are summarized. The effects of catalyst, reaction mechanism, experimental results, reaction characteristics and limitations are briefly discussed. At last, the future development on the diverse reactions of 1,3-indanedione is also prospected.

Cite this article

Sun Jing , Cao Jun , Han Ying , Yan Chao-Guo . Progress in Multicomponent Reactions Involving 1,3-Indanedione[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4122 -4146 . DOI: 10.6023/cjoc202005003

References

[1] Khan, F. A.; Maalik, A. Trop. J. Pharm. Res. 2015, 14, 1937.
[2] (a) Tu, S. J.; Jiang, B.; Zhang, J. Y.; Jia, R. H.; Zhang, Y.; Yao, C. S. Org. Biomol. Chem. 2006, 4, 3980.
(b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
(c) Ahadi, S.; Moafi, L.; Feiz, A.; Bazgir, A. Tetrahedron 2011, 67, 3954.
(d) Liang, B.; Kalidindi, S.; Porco, J. A. Stephenson, C. Org. Lett. 2010, 12, 572.
(e) Nishiyama, T.; Shiotsu, S.; Tsujita, H. Polym. Degrad. Stab. 2002, 76, 435.
[3] Sharma, L. K.; Kimb, K. B.; Elliott, G. I. Green Chem. 2011, 13, 1546.
[4] Asadi, S.; Mohammadi Z. G. Mol. Diversity 2015, 20, 111.
[5] (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
(b) Peppe, C.; Chagas, R. P.; Burrow, R. A. J. Organomet. Chem. 2008, 693, 3441.
(c) Ren, Z.; Cao, W.; Ding, W.; Wang, Y.; Wang, L. Synth. Commun. 2004, 34, 3785.
(d) Arai, S.; Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998, 63, 9572.
(e) Miyagawa, T.; Tatenuma, T.; Tadokoro, M.; Satoh, T. Tetrahedron 2008, 64, 5279.
[6] Wang, G. W.; Gao, J. Org. Lett. 2009, 11, 2385.
[7] Yang, S. X.; Chen, J.; Wu, X. Y.; Deng, H. M.; Shao, M.; Zhang, H.; Cao, W. G. Chin. J. Org. Chem. 2010, 30, 1521(in Chinese). (杨树新, 陈杰, 吴小余, 邓红梅, 邵敏, 张慧, 曹卫国, 有机化学, 2010, 30, 1521.)
[8] Das, U.; Tsai, Y. L.; Lin, W. W. Org. Biomol. Chem. 2013, 11, 44.
[9] Nemcsok, T.; Rapi, Z.; Bagi, P.; Olah, A.; Keglevich, G.; Bako, P. Catal. Lett. 2020, 150, 930.
[10] Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.
[11] Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.
[12] Jiang, Y. H.; Sun, J.; Sun, Q.; Yan, C. G. Asian J. Org. Chem. 2017, 6, 862.
[13] Hu, F.; Wei, Y.; Shi, M. Tetrahedron 2012, 68, 7911.
[14] Zhan, G.; Shi, M. L.; He, Q.; Lin, W. J.; Ouyang, Q.; Du, W.; Chen, Y. C. Angew. Chem., Int. Ed. 2016, 55, 2147.
[15] Yang, Y.; Jiang, Y.; Du, W.; Chen, Y. C. Chem.-Eur. J. 2020, 26, 1754.
[16] Lu, Y. L.; Sun, J.; Jiang, Y. H.; Yan, C. G. RSC Adv. 2016, 6, 50471.
[17] Ramachary, D. B.; Reddy, T. P.; Kumar, A. S. Org. Biomol. Chem. 2016, 14, 6517.
[18] Manjappa, K. B.; Peng, Y. T.; Jhang, W. F.; Yang, D. Y. Tetrahedron 2016, 72, 853.
[19] Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.
[20] Jin, G.; Sun, J.; Yan, C. G. RSC Adv. 2016, 6, 84379.
[21] Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.
[22] Liu, C. Z.; Han, Y.; Qi, W. J.; Yan, C. G. Heterocycl. Commun. 2016, 22, 301.
[23] Qi, W. J.; Han, Y.; Liu, C. Z.; Yan, C. G. Synthesis 2016, 48, 4465.
[24] Chen, L.; Sun, J.; Huang, Y.; Zhang, Y.; Yan, C. G. Sci. Rep. 2017, 7, 12418.
[25] Huang, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 10496.
[26] Zhao, B.; Liang, H. W.; Yang, J.; Yang, Z.; Wei, Y. ACS Catal. 2017, 7, 5612.
[27] Yu, J.; Chien, H.; Lin, Y.; Karanam, P.; Chen, Y.; Lin, W. W. Chem. Commun. 2018, 54, 9921.
[28] Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.
[29] Duan, J. D.; Mao, Y. Y.; Zhang, L.; Zhu, N.; Fang, Z.; Guo, K. Adv. Synth. Catal. 2020, 362, 695.
[30] Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 12437.
[31] (a) Qiu, X. L.; Meng, W. D.; Qing, F. L. Tetrahedron 2004, 60, 6711.
(b) Qiu, X. L.; Qing, F. L. Eur. J. Org. Chem. 2011, 3261.
(c) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
(d) Acena, J. L.; Simon-Fuentes, A.; Fustero, S. Curr. Org. Chem. 2010, 14, 928.
(e) March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J. Chem. Biodiversity 2012, 9, 2410.
(f) Remete, A. M.; Nonn, M.; Fustero, S.; Fülöp, F.; Kiss, L. Tetrahedron 2018, 74, 6367.
[32] (a) Yoder, N. C.; Jumar, K. Chem. Soc. Rev. 2002, 31, 335.
(b) Akcay, G.; Kumar, K. J. Fluorine Chem. 2009, 130, 1178.
(c) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135.
(d) Marsh, E.; Neil, G. Acc. Chem. Res. 2014, 47, 2878.
(e) Berger, A. A.; Völler, J. S.; Budisa, N.; Koksch, B. Acc. Chem. Res. 2017, 50, 2093.
(f) Huhmann, S.; Koksch, B. Eur. J. Org. Chem. 2018, 3667.
[33] Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[34] Smits, R. C.; Cadicamo, D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
[35] Winter, M.; Faust, K.; Himmelsbach, M.; Waser, M. Org. Biomol. Chem. 2019, 17, 5731.
[36] Li, Y. M.; Zhang, H. K.; Wei, R.; Miao, Z. W. Adv. Synth. Catal. 2017, 359, 4158.
[37] Rajawat, A.; Khandelwal, S.; Kumar, M. RSC Adv. 2014, 4, 5105.
[38] Khandelwal, S.; Tailor, Y. K.; Kumar, M. J. Mol. Liq. 2016, 215, 345.
[39] Tailor, Y. K.; Khandelwal, S.; Jain, H. K. Curr. Org. Synth. 2015, 12, 484.
[40] Khandelwal, S.; Rajawat, A.; Tailor, K. Y.; Kumar, M. Comb. Chem. High Throughput Screening 2014, 17, 763.
[41] Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.
[42] Rushell, E.; Tailor, Y. K.; Khandelwal, S.; Verma, K.; Agarwal, M.; Kumar, M. New J. Chem. 2019, 43, 12462.
[43] Yang, S. M.; Karanam, P.; Wang, M.; Jang, Y. J.; Yeh, Y. S.; Tseng, P. Y.; Ganapuram, M. R.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2019, 55, 13981.
[44] Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
[45] Wang, X. H.; Yan, C. G. Synthesis 2014, 46, 1059.
[46] Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.
[47] Yang, W. J.; Zhang, J.; Sun, J.; Yan, C. G. Eur. J. Org. Chem. 2016, 5423.
[48] Mohammad, H. R.; Mohammad, H. M.; Razieh, M. J. Chem. Res. 2017, 41, 430.
[49] Pelit, E. Chem. Sci. Int. J. (CSIJ) 2017, 20, 1.
[50] Li, M. M.; Duan, C. S.; Yu, Y. Q.; Xu, D. Z. Dyes Pigm. 2018, 150, 202.
[51] Maleki, A.; Yeganeh, N. N. Appl. Organomet. Chem. 2017, 31, e3814.
[52] Rather, R. A.; Siddiqui, Z. N. Appl. Organomet. Chem. 2019, 33, e5176.
[53] Leila, Z. F.; Mohammad, N.; Samira, N. K. J. Organomet. Chem. 2019, 894, 18.
[54] Hernandez, J. O.; Lizarazo, C.; Cobo, J.; Portilla, J. RSC Adv. 2019, 9, 27318.
[55] Bagheri, M.; Gholamzadeh, P.; Ziarani, G. M.; Badiei, A. Res. Chem. Intermed. 2019, 45, 3301.
[56] Mohammadi, A.; Mohammad, B.; Nasri, S. RSC Adv. 2019, 9, 16525.
[57] Luo, Q.; Huang, R.; Xiao, Q.; Kong, L. B.; Lin, J.; Yan, S. J. ACS Omega 2019, 4, 6637.
[58] Gao, Y.; Liu, D. H.; Fu, Z. Q.; Huang, W. Org. Lett. 2019, 21, 926.
[59] Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.
[60] Chang, Y. P.; Gurubrahamam, R.; Chen, K. M. Org. Lett. 2015, 17, 2908.
[61] Reddy, G. M.; Ko, C. T.; Hsieh, K. H.; Lee, C. J.; Das, U.; Lin, W. W. J. Org. Chem. 2016, 81, 2420.
[62] Yang, R. Y.; Sun, J.; Yan, C. G. ACS Omega 2018, 3, 5406.
[63] Champetter, P.; Castillo-Aguilera, O.; Taillier, C. Briere, J. F.; Dalla, V.; Oudeyer, S.; Comesse, S. Eur. J. Org. Chem. 2019, 7703.
[64] Yang, W. J.; Fang, H. L.; Sun, J.; Yan, C. G. ACS Omega 2019, 4, 13553.
[65] Sun, J.; Yang, R. Y.; Zhan, S. C.; Yan, C. G. ChemistrySelect 2019, 4, 10100.
[66] Zhan, S. C.; Sun, J.; Liu, R. Z.; Yan, C. G. Org. Biomol. Chem. 2020, 18, 163.
[67] Ye, R.; Yan, C. G. Eur. J. Org. Chem. 2019, 5882.
[68] (a) Kohlhagen, G.; Paull, K.; Cushman, M.; Nagafuji, P.; Pommier, Y. Mol. Pharmacol. 1998, 54, 50.
(b) Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. J. Med. Chem. 1999, 42, 446.
(c) Cushman, M.; Jayaraman, M.; Vroman, J. A.; Fukunaga, A. K.; Fox, B. M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y. J. Med. Chem. 2000, 43, 3688.
[69] (a) Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 6283.
(b) Morrell, A.; Placzek, M.; Parmley, S.; Antony, S.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2007, 50, 4419.
(c) Kiselev, E.; DeGuire, S.; Morrell, A.; Agama, K.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 6106.
(d) Kiselev, E.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2012, 55, 1682.
(e) Nguyen, T. X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2015, 58, 3188.
(f) Lv, P. C.; Elsayed, M. S. A.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 4890.
[70] Huang, C. Y.; Kavala, V.; Kuo, C. W.; Konala, A.; Yang, T. H.; Yao, C. F. J. Org. Chem. 2017, 82, 1961.
[71] Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.
[72] Eisert, B.; Geiss, F. Chem. Ber. 1961, 94, 929.
[73] Drew, M. G. B.; Vickery, B.; Willey, G. R. J. Chem. Soc., Perkin Trans. 2 1982, 1297.
[74] Bello, K. A.; Cheng, L.; Griffiths, J. J. Chem. Soc., Perkin Trans. 2 1987, 815.
[75] Payili, N.; Rekula, S. R.; Aitha, A.; Mutha, A. K.; Naidu, C. G.; Yennam, S. Org. Biomol. Chem. 2019, 17, 9442.
[76] Zhang, L.; Duan, J. D.; Xu, G. C.; Ding, X. J.; Mao, Y. Y.; Rong, B. S.; Zhu, N.; Fang, Z.; Li, Z. J.; Guo. K. J. Org. Chem. 2020, 85, 2532.
[77] Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.
[78] Amsharov, K. Y.; Jansen, M. J. Org. Chem. 2008, 73, 2931.
[79] Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 9008.
[80] Wu, M. C.; Yang, J. H,; Luo, F.; Cheng, C. G.; Zhu, G. G. Org. Biomol. Chem. 2019, 17, 5684.
[81] Cao, J.; Sun, J.; Yan, C. G. J. Org. Chem. 2020, 85, 2168.
[82] Chen, R.; Xu, S.; Fan, X.; Li, H.; Tang, Y.; He, Z. J. Org. Biomol. Chem. 2015, 13, 398.
[83] Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.
[84] Yang, W. J.; Zhang, J.; Sun, J.; Xie, Y. J.; Yan, C. G. Tetrahedron 2017, 73, 3387.
[85] Manick, A. D.; Salgues, B.; Parrain, J. L.; Zaborova, E.; Fages, F.; Amatore, M.; Commeiras L. Org. Lett. 2020, 22, 1894.
[86] Liegeois, J. F.; Bruhwyler, J.; Rogister, F.; Delarge, J. Curr. Med. Chem. 1995, 1, 471.
[87] Peters, J. U.; Galley, G.; Jacobsen, H.; Czech, C.; DavidPierson, P.; Kitas, E. A.; Ozmen, L. Bioorg. Med. Chem. Lett. 2007, 17, 5918.
[88] Fuwa, H.; Takahashi, Y.; Konno, Y.; Watanabe, N.; Miyashita, H.; Sasaki, M.; Natsugari, H.; Kan, T.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. ACS Chem. Biol. 2007, 2, 408.
[89] Shi, R. G.; Wang, X. H.; Liu, R. Z.; Yan, C. G. Chem. Commun. 2016, 52, 6280.
[90] Samineni, R.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18, 2832.
[91] Yao, Q. Y.; Kong, L. K.; Wang, M. D.; Yuan, Y.; Sun, R. Z.; Li, Y. Z. Org. Lett. 2018, 20, 1744.
Outlines

/