Visible-Light Promoted Hydroxylation of Aryl Halides under Mild Reaction Conditions in Neat Water

  • Xu Xiuzhi ,
  • Zhang Fan ,
  • Huang Sheng ,
  • Zhang Zhiqiang ,
  • Ke Fang
Expand
  • a Fujian Provincial Key Laboratory of Natural Medicine Pharmacolog, Department of Pharmacy, Fujian Medical University, Fuzhou 350004;
    b The First Affiliated Hospital of Fujian Medical University Oncology, Fuzhou 35000

Received date: 2020-05-02

  Revised date: 2020-06-12

  Online published: 2020-07-17

Supported by

Project supported by the Natural Science Foundation of Fujian Province (Nos. 2016Y9052, 2016Y9053, 2017J01820, 2017-1-64).

Abstract

A novel visible-light-introduced reaction for the construction of phenols via hydroxylation of aryl halides has been developed. The reaction has been achieved in high yield under mild conditions by using iodine as photocatalyst, which is cheap, easy to handle and environmentally friendly. A variety of phenols were obtained in up to 92% yields. Moreover, aryl chlorides were also successfully employed as substrates, affording the target phenols in good isolated yields. It might provide promising protocol for the synthesis of phenol derivatives. Its application was performed by the synthesis of 5-acetyl-4-hy-droxy-2-methoxybenzyl diisopropylcarbamodithioate, which displayed significant anti-proliferation effect.

Cite this article

Xu Xiuzhi , Zhang Fan , Huang Sheng , Zhang Zhiqiang , Ke Fang . Visible-Light Promoted Hydroxylation of Aryl Halides under Mild Reaction Conditions in Neat Water[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2912 -2918 . DOI: 10.6023/cjoc202005004

References

[1] (a) Kwong, H.-K.; Lo, P.-K.; Yiu, S.-M.; Hirao, H.; Lau, K.-C.; Lau, T.-C. Angew. Chem.. Int. Ed. 2017, 56, 12260.
(b) Bracegirdle, S.; Anderson, E. A. Chem. Commun. 2010, 46, 3454.
(c) Ohwada, A.; Nara, S.; Sakamoto, T.; Kikugawa, Y. J. Chem. Soc.. Perkin Trans. 12001, 3064.
(d) Rayment, E. J.; Summerhill, N.; Anderson, E. A. J. Org. Chem. 2012, 77, 7052.
(e) Morimoto, Y.; Bunno, S.; Fujieda, N.; Sugimoto, H.; Itoh, S. J. Am. Chem. Soc. 2015, 137, 5867.
(f) Yin, W.; Pan, X.; Leng, W.; Chen, J.; He, H. Green Chem. 2019, 21, 4614.
[2] (a) Nakayama, M.; Fukuoka, Y.; Nozaki, H.; Matsuo, A.; Hayashi, S. Chem. Lett. 1980, 9, 1243.
(b) Rappoport, Z. The Chemistry of Phenols, Wiley, Hoboken, N. J., 2003.
[3] (a) Schmidt, R. J. Appl. Catal. A 2005, 280, 89.
(b) Fyfe, C. A. The Chemistry of the Hydroxyl Group, Vol. 1, Ed.:Patai, S., Wiley-Interscience, New York, 1971, pp. 83~127.
[4] Cornils, B.; Herrmann, W. A. J. Catal. 2003, 216, 23.
[5] Taddei, M.; Ricci, A. Synthesis 1986, 1986, 633.
[6] (a) Damkaci, F.; Sigindere, C.; Sobiech, T.; Vik, E.; Malone, J. Tetrahedron Lett. 2017, 58, 3559.
(b) Ding, G.; Han, H.; Jiang, T.; Wu, T.; Han, B. Chem. Commun. 2014, 50, 9072.
(c) Ghiasbeigi, E.; Soleiman-Beigi, M. ChemistrySelect 2019, 4, 3611.
(d) Mketo, N.; Jordaan, H. J. L.; Jordaan, A.; Swarts, A. J.; Mapolie, S. F. Eur. J. Inorg. Chem. 2016, 3781.
(e) Wang, D.; Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem. 2014, 315.
(f) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc. 2016, 138, 13493.
(g) Shendage, S. S. J. Chem. Sci. 2018, 130, 13.
(h) Cyr, P.; Charette, A. B. Synlett 2014, 25, 1409.
(i) Ramu, R.; Wanna, W. H.; Janmanchi, D.; Tsai, Y.-F.; Liu, C.-C.; Mou, C.-Y.; Yu, S.-S. Mol. Catal. 2017, 441, 114.
[7] Fier, P. S.; Maloney, K. M. Org. Lett. 2017, 19, 3033.
[8] Zhao, P.; Zhang, Y.; Li, D.; Cui, H.; Zhang, L. Chin. J. Catal. 2018, 39, 334.
[9] (a) Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426.
(b) Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Green Chem. 2019, 21, 3602.
(c) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(d) Wang, D.; Zhang, L.; Luo, S. Chin. J. Chem. 2018, 36, 311.
[10] (a) Cai, Y.-M.; Xu, Y.-T.; Zhang, X.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 8479.
(b) Hou, T.; Lu, P.; Li, P. Tetrahedron Lett. 2016, 57, 2273.
(c) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(d) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841(in Chinese). (肖丽, 刘嘉恒, 王挺, 化学学报, 2019, 77, 841).
(e) Wang, H.; Wu, P.; Zhao, X.; Zeng, J.; Wang, Q. Acta Chim. Sinica 2019, 77, 231(in Chinese). (王浩, 吴品儒, 赵祥, 曾静, 万谦, 化学学报, 2019, 77, 231).
[11] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248.
[12] (a) Zablocka, M.; Hameau, A.; Caminade, A.-M.; Majoral, J.-P. Adv. Synth. Catal. 2010, 352, 2341.
(b) Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
(c) Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Chem. Rev. 2018, 118, 679.
(d) Song, G.-L.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Tetrahedron 2015, 71, 8823.
[13] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248.
[14] (a) Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Green Chem. 2019, 21, 4329.
(b) Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. Synth. Commun. 2018, 48, 3089.
[15] (a) Tian, Y.-E.; Sun, D.; Han, X.-X.; Yang, J.-M.; Zhang, S.; Feng, N.-N.; Zhu, L.-N.; Xu, Z.-Y.; Che, Z.-P.; Liu, S.-M.; Lin, X.-M.; Jiang, J.; Chen, G.-Q. J. Asian Nat. Prod. Res. 2020, Doi:10.1080/10286020.2020.1718116.
(b) Peng, Y.; Zheng, X.; Fan, Z.; Zhou, H.; Zhu, X.; Wang, G.; Liu, Z. Phytomedicine 2020, 68, Article 153151.
[16] (a) Cheng, C.-S.; Chen, J.-X; Tang, J.; Geng, Y.-W.; Zheng, L.; Lv, L.-L.; Chen, L.-Y.; Chen, Z. Cancer Manage. Res. 2020, 12, 641.
(b) Huang, W.; Ding, Y.; Miao, Y.; Liu, M.-Z.; Li, Y.; Yang, G.-F. Eur. J. Med. Chem. 2009, 44, 3687.
[17] (a) Cai, Y.-M.; Xu, Y.-T.; Zhang, X. Gao, W.-X.; Huang, X.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 10169.
(b) Jung, S.-H.; Yeon, J.-W.; Hong, S. Y.; Kang, Y.; Song, K. Nucl. Sci. Eng. 2015, 181, 191.
(c) Banerjee, A.; Lei, Z.; Ngal, M.-Y. Synthesis 2019, 51, 303.
(d) Liu, W.; Li, J.; Huang, C.-Y.; Li, C.-J. Angew. Chem.. Int. Ed. 2020, 59, 1786.
(e) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2015, 137, 8328.
[18] (a) González-Calderón, D.; González-González, C.-A.; Fuentes-Benítez, A.; Cuevas-Yáñez, E.; Corona-Becerril, D.; González-Romero, C. Helv. Chim. Acta 2014, 97, 965.
(b) Bora, S. J.; Chetia, B. J. Organomet. Chem. 2017, 851, 52.
(c) Reitti, M.; Gurubrahamam, R., Walther, M.; Lindstedt, E.; Olofsson, B. Org. Lett. 2018, 20, 1785.
(d) Sang, D.; Wang, J.; Zheng, Y.; He, J.; Yuan, C.; An, Q.; Tian, J. Synthesis 2017, 49, 2721.
(e) Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Nikoorazm, M.; Naseri Z. Chin. Chem. Lett. 2011, 22, 1431.
(f) Rahimi, J.; Taheri-Ledari, R.; Niksefat, M.; Maleki A. Catal. Commun. 2020, 134, 105850.
(g) Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G..; Hu, Y. Org. Lett. 2010, 12, 1964.
(h) Sodhi, R. K.; Paul, S.; Clark, J. H. Green Chem. 2012, 14, 1649.
(i) Chatterjee, N.; Chowdhury, H.; Sneh, K.; Goswami A. Tetrahedron Lett. 2015, 56, 172.
(j) Richter, H.; Beckendorf, S.; Mancheño, O. G. Adv. Synth. Catal. 2011, 353, 295.
(k) Sridhar, A.; Rangasamy, R.; Selvaraj, M. New J. Chem. 2019, 43, 17974.
[19] Jing, L.; Wei, J.; Zhou, L.; Li, Z.; Zhou, X. Chem. Commun. 2010, 46, 4767.
Outlines

/