Recent Progress in P- and S-Arylation Reactions of Arynes

  • Huang Yuanting ,
  • Chen Qian
Expand
  • School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006

Received date: 2020-05-18

  Revised date: 2020-06-21

  Online published: 2020-07-17

Supported by

Project supported by the Science and Technology Planning Project of Guangdong Province (No. 2017A010103044), the 100 Young Talents Programme of Guangdong University of Technology (No. 220413506) and the Basic and Applied Basic Research Foundation of Guangdong Province (No. 2019B1515120035).

Abstract

Arylphosphine and aryl sulfur compounds have been widely used in organic synthesis, functional materials and pharmaceutical chemistry. Thus, the development of green, mild and highly efficient methodologies for P- and S-arylation is of great importance. Recently, the reactions involving arynes provided a novel approach to the arylation of organophosphorus and organosulfur compounds. These reactions can be performed in the absence of transition metal catalysts under mild conditions with broad scope. The recent progress in P- and S-arylation reactions with arynes is introduced on the basis of different reaction types.

Cite this article

Huang Yuanting , Chen Qian . Recent Progress in P- and S-Arylation Reactions of Arynes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4087 -4100 . DOI: 10.6023/cjoc202005047

References

[1] (a) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
(b) Montchamp, J.-L. Acc. Chem. Res. 2014, 47, 77.
(c) Zhang, J.; Ding, D.; Wei, Y.; Xu, H. Chem. Sci. 2016, 7, 2870.
(d) Joachimiak, Ł.; Błażewska, K. M. J. Med. Chem. 2018, 61, 8536.
[2] (a) Otzen, T.; Wempe, E. G.; Kunz, B.; Bartels, R.; Lehwark-Yvetot, G.; Hänsel, W.; Schaper, K. J.; Seydel, J. K. J. Med. Chem. 2004, 47, 240.
(b) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556(in Chinese). (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
(c) Lee, C.-F.; Liu, Y.-C.; Badsara, S. S. Chem.-Asian J. 2014, 9, 706.
(d) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
[3] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
[4] (a) Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J.-M.; Möbitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.; Desrayaud, S.; Neumann, U. J. Med. Chem. 2012, 55, 3364.
(b)Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
[5] (a) Wang, Y.; Wu. M.; Ding, Y. Chin. J. Org. Chem. 2010, 30, 757(in Chinese). (王勇, 吴梅, 丁贻祥, 有机化学, 2010, 30, 757.)
(b) Xu, Q.; Jia, X.; Li, X.; Sun, Q.; Zhou, Y.; Yin, S.; Han, L. Chin. J. Org. Chem. 2014, 34, 1340(in Chinese). (徐清, 贾小娟, 李晓慧, 孙清, 周永波, 尹双凤, 韩立彪, 有机化学, 2014, 34, 1340.)
(c) Jablonkai, E.; Keglevich, G. Curr. Org. Synth. 2014, 11, 429.
(d) Jablonkai, E.; Keglevich, G. Org. Prep. Proced. Int. 2014, 46, 281.
[6] (a) Yang, M.; Pei, J.; Yan, G.; Weng, Q. Chin. J. Org. Chem. 2013, 33, 343(in Chinese). (杨明华, 裴吉, 严国兵, 翁秋月, 有机化学, 2013, 33, 343.)
(b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 188.
(c) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 4404.
(d) Richards-Taylor, C. S.; Blakemore, D. C.; Willis, M. C. Chem. Sci. 2014, 52, 12679.
[7] (a) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502.
(b) Okuma, K. Heterocycles 2012, 85, 515.
(c) Bhojgude, S. S.; Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 1520.
(d) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116.
(e) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
[8] Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211.
[9] Matsuzawa, T.; Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.
[10] (a) Chen, L.; Zhang, C.; Wen, C.; Zhang, K.; Liu, W.; Chen, Q. Catal. Commun. 2015, 65, 81.
(b) Chen, Q.; Zhang, C.; Chen, L.; Wen, C.; Du, Z.; Chen, H.; Zhang, K. Tetrahedron Lett. 2015, 56, 2094.
(c) Wen, C.; Chen, Q.; He, Z.; Yan, X.; Zhang, C.; Du, Z.; Zhang, K. Tetrahedron Lett. 2015, 56, 5470.
(d) Chen, Q.; Yan, X.; Du, Z.; Zhang, K.; Wen, C. J. Org. Chem. 2016, 81, 276.
(e) Chen, Q.; Yan, X.; Wen, C.; Zeng, J.; Huang, Y.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 9476.
[11] Rémond, E.; Tessier, A.; Leroux, F. R.; Bayardon, J.; Jugé, S. Org. Lett. 2010, 12, 1568.
[12] Yoshida, S.; Uchida, K.; Igawa, K.; Tomooka, K.; Hosoya, T. Chem. Commun. 2014, 50, 15059.
[13] Dhokale, R. A.; Mhaske, S. B. Org. Lett. 2013, 15, 2218.
[14] Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
[15] Yoshida, S.; Hosoya, T. Chem. Lett. 2013, 42, 583.
[16] Yang, G.; Shen, C.; Quan, M.; Zhang, W. Tetrahedron 2016, 72, 333.
[17] Yoshida, H.; Watanabe, M.; Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 1538.
[18] Alajarin, M.; Lopez-Leonardo, C.; Raja, R.; Orenes, R. Org. Lett. 2011, 13, 5668.
[19] Lopez-Leonardo, C.; Raja, R.; López-Ortiz, F.; del Águila-Sánchez, M. Á.; Alajarin, M. Eur. J. Org. Chem. 2014, 1084.
[20] Shen, C.; Yang, G.; Zhang, W. Org. Lett. 2013, 15, 5722.
[21] Qi, N.; Zhang, N.; Allu, S. R.; Gao, J.; Guo, J.; He, Y. Org. Lett. 2016, 18, 6204.
[22] Neog, K.; Dutta, D.; Das, B.; Gogoi, P. Org. Biomol. Chem. 2019, 17, 6450.
[23] Okugawa, Y.; Hayashi, Y.; Kawauchi, S.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3670.
[24] Bhunia, A.; Kaicharla, T.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 11389.
[25] Bhunia, A.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2014, 16, 5132.
[26] Fujimoto, H.; Kusano, M.; Kodama, T.; Tobisu, M. Org. Lett. 2020, 22, 2293.
[27] Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.
[28] Yoshida, S.; Nagai, A.; Uchida, K.; Hosoya, T. Chem. Lett. 2017, 46, 733.
[29] Pandya, V. G.; Mhaske, S. B. Org. Lett. 2014, 16, 3836.
[30] Aithagani, S. K.; Yempalla, K. R.; Munagala, G.; Vishwakarma, R. A.; Singh, P. P. RSC Adv. 2014, 4, 50208.
[31] Sumii, Y.; Sugita, Y.; Tokunaga, E.; Shibata, N. ChemistryOpen 2018, 7, 204.
[32] Zhang, L.; Li, X.; Sun, Y.; Zhao, W.; Luo, F.; Huang, X.; Lin, L.; Yang, Y.; Peng, B. Org. Biomol. Chem. 2017, 15, 7181.
[33] Sun, C.-H.; Lu, Y.; Zhang, Q.; Lu, R.; Bao, L.-Q.; Shen, M.-H.; Xu, H.-D. Org. Biomol. Chem. 2017, 15, 4058.
[34] Xu, X.-B.; Lin, Z.-H.; Liu, Y.; Guo, J.; He, Y. Org. Biomol. Chem. 2017, 15, 2716.
[35] Thangaraj, M.; Gaykar, R. N.; Roy, T.; Biju, A. T. J. Org. Chem. 2017, 82, 4470.
[36] Tan, J.; Zheng, T.; Xu, K.; Liu, C. Org. Biomol. Chem. 2017, 15, 4946.
[37] Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K. Chem. Commun. 2018, 54, 1303.
[38] Fan, R.; Liu, B.; Zheng, T.; Xu, K.; Tan, C.; Zeng, T.; Su, S.; Tan, J. Chem. Commun. 2018, 54, 7081.
[39] Jian, H.; Wang, Q.; Wang, W.-H.; Li, Z.-J.; Gu, C.-Z.; Dai, B.; He, L. Tetrahedron 2018, 74, 2876.
[40] Chen, J.; Palani, V.; Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 4318.
[41] Singh, P.; Cairns, A. G.; Adolfsson, D. E.; Ådén, J.; Sauer, U. H.; Almqvist, F. Org. Lett. 2019, 21, 6946.
[42] Biswas, K. Greaney, M. F. Org. Lett. 2011, 13, 4946.
[43] Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716.
[44] Li, Y.; Mük-Lichtenfeld, C.; Studer, A. Angew. Chem., Int. Ed. 2016, 55, 14435.
[45] Zhao, X.; Huang, Y.; Qing, F.-L.; Xu, X.-H. RSC Adv. 2017, 7, 47.
[46] Ahire, M. M.; Thoke, M. B.; Mhaske, S. B. Org. Lett. 2018, 20, 848.
[47] Li, Z.; Jian, H.; Wang, W.; Wang, Q.; He, L. Chin. J. Org. Chem. 2018, 38, 2045(in Chinese). (李志娟, 翦辉, 王伟华, 王强, 何林, 有机化学, 2018, 38, 2045.)
[48] Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 13112.
[49] Qiu, D.; He, J.; Yue, X.; Shi, J.; Li, Y. Org. Lett. 2016, 18, 3130.
[50] Gaykar, R. N.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 737.
[51] Yoshida, S.; Yano, T.; Misawa, Y.; Sugimura, Y.; Igawa, K.; Shimizu, S.; Tomooka, K.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14071.
[52] Matsuzawa, T.; Uchida, K.; Yoshida, S.; Hosoya, T. Chem. Lett. 2018, 47, 825.
[53] Yoshida, S.; Nakajima, H.; Uchida, K.; Yano, T.; Kondo, M.; Matsushita, T.; Hosoya, T. Chem. Lett. 2017, 46, 77.
[54] (a) Li, H.-Y.; Xing, L.-J.; Lou, M.-M.; Wang, H.; Liu, R.-H.; Wang, B. Org. Lett. 2015, 17, 1098.
(b) Lou, M.-M.; Wang, H.; Song, L.; Liu, H.-Y.; Li, Z.-Q.; Guo, X.-S.; Zhang, F.-G.; Wang, B. J. Org. Chem. 2016, 81, 5915.
[55] Li, Y.; Studer, A. Org. Lett. 2017, 19, 666.
[56] Li, X.; Sun, Y.; Huang, X.; Zhang, L.; Kong, L.; Peng, B. Org. Lett. 2017, 19, 838.
[57] Matsuzawa, T.; Uchida, K.; Yoshida, S.; Hosoya, T. Org. Lett. 2017, 19, 5521.
[58] Toledo, F. T.; Marques, H.; Comasseto, J. V.; Raminelli, C. Tetrahedron Lett. 2007, 48, 8125.
[59] Mesgar, M.; Daugulis, O. Org. Lett. 2017, 19, 4247.
[60] Yoshida, H.; Terayama, T.; Ohshita, J.; Kunai, A. Chem. Commun. 2004, 1980.
[61] Chen, J.; Murafuji, T. Organometallics 2011, 30, 4532.
[62] Liu, F.-L.; Chen, J.-R.; Zou, Y.-Q.; Wei, Q.; Xiao, W.-J. Org. Lett. 2014, 16, 3768.
[63] Hazarika, H.; Neog, K.; Sharma, A.; Das, B.; Gogoi, P. J. Org. Chem. 2019, 84, 5846.
[64] Li, Y.; Qiu, D.; Gu, R.; Wang, J.; Shi, J.; Li, Y. J. Am. Chem. Soc. 2016, 138, 10814.
[65] Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 4258.
[66] García-López, J.-A.; Çetin, M.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 2156.
[67] Zeng, Y.; Hu, J. Org. Lett. 2016, 18, 856.
[68] Peng, X.; Ma, C.; Tung, C.-H.; Xu, Z. Org. Lett. 2016, 18, 4154.
[69] Kwon, J.; Kim, B. M. Org. Lett. 2019, 21, 428.
[70] Gaykar, R. N.; Guin, A.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 9613.
[71] Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583.
[72] Hall, C.; Henderson, J. L.; Ernouf, G.; Greaney, M. F. Chem. Commun. 2013, 49, 7602.
[73] Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc. 2015, 137, 5670.
[74] Palani, V.; Chen, J.; Hoye, T. R. Org. Lett. 2016, 18, 6312.
[75] Chen, Y.; Willis, M. C. Org. Lett. 2015, 17, 4786.
[76] Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Chem. Commun. 2015, 51, 9165.
[77] Garg, P.; Singh, A. Org. Lett. 2018, 20, 1320.
[78] Ding, W.; Yu, A.; Zhang, L.; Meng, X. Org. Lett. 2019, 21, 9014.
Outlines

/