Visible-Light-Promoted Diiodination of Alkynes Using Sodium Iodide

  • Lu Lingling ,
  • Li Yiming ,
  • Jiang Xuefeng
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071

Received date: 2020-05-23

  Revised date: 2020-06-26

  Online published: 2020-07-17

Supported by

Project supported by the National Key Research and Development Program of China (No. 2017YFD0200500), and the National Natural Science Foundation of China (Nos. 21971065, 21722202, 21672069).

Abstract

1,2-Diiodoalkenes can be used as precursors for synthesis of functional molecules such as heterocyclic drugs and organic conjugated materials due to their derivability of functional groups. Herein, alkynes can be converted into 1,2-trans-diiodioalkenes efficiently and conveniently by using inexpensive and stable sodium iodide as iodine source and air as oxidant under the visible-light (blue light) with normal temperature and atmospheric pressure. The corresponding reactions were operated under mild conditions with inexpensive and easily accessible reagents, which obviate the need of transition-metal-catalysts or oxidizing reagents. Meanwhile, this method is compatible with a wide range of substrates, including terminal and internal alkynes even the peptide and carbohydrates containing a variety of heteroatoms and active hydrogen.

Cite this article

Lu Lingling , Li Yiming , Jiang Xuefeng . Visible-Light-Promoted Diiodination of Alkynes Using Sodium Iodide[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3354 -3361 . DOI: 10.6023/cjoc202005062

References

[1] (a) Seechurn, C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(b) Piontek, A.; Bisz, E.; Szostak, M. Angew. Chem., Int. Ed. 2018, 57, 11116.
(c) King, A. O.; Yasuda, N. In Organometallics in Process Chemistry, Springer, Berlin, 2004, pp. 205~245.
(d) Ian, W. Ph.D. Dissertation, Durham University, Durham, 2011.
(e) Zeng, X.; Liu, S.; Yang, Y.; Yang, Yi; Hammond, G. B.; Xu, B. Chem 2020, 6, 1018.
[2] (a) Zani, L.; Dessì, A.; Franchi, D.; Calamante, M.; Reginato, G.; Mordini, A. Coord. Chem. Rev. 2019, 392, 177.
(b) Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 7725.
(c) Furukawa, S.; Yasuda, T. J. Mater. Chem. A 2019, 7, 14806.
(d) Chen, L.; Zeng, M.; Weng, C.; Tan, S.; Shen, P. ACS Appl. Mater. Interfaces 2019, 11, 48134.
(e) Tovar, J. D. Synthesis 2011, 2387.
(f) Olla, T.; Ibraikulov, O. A.; Ferry, S.; Boyron, O.; Méry, S.; Heinrich, B.; Heiser, T.; Lévêque, P.; Leclerc, N. Macromolecules 2019, 52, 8006.
[3] (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed. 2007, 46, 7744.
(b) Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.; Peng, X.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.
[4] (a) Welch, M. J.; Redvanly, C. S. In The Hand Book of Radiopharmaceuticals: Radiochemistry and Applications, Ed.:Finn, R., Wiley, New York, 2003, p. 423.
(b) Hallouard, F.; Anton, N.; Choquet, P.; Constantinesco, A.; Vandamme, T. Biomaterials 2010, 31, 6249.
(c) Zimprich, F.; Rath, J.; Mauritz, M.; Zulehner, G.; Hilfer, Eva.; Cetin, H.; Kasprian, G.; Auff, E. J. Neurol. 2017, 264, 1209.
[5] (a) Gkotsi, D. S.; Ludewig, H.; Sharma, S. V.; Connolly, J. A.; Dhaliwal, J.; Wang, Y.; Unsworth, W. P.; Taylor, R. J. K.; McLachlan, M. M. W.; Shanahan, S.; Naismith, J. H.; Goss, R. J. M. Nat. Chem. 2019, 11, 1091.
(b) Butler, A.; Sandy, M. Nature 2009, 460, 848.
(c) Latham, J.; Brandenburger, E.; Shepherd, A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.
[6] Li, Y.; Mou, T.; Lu, L.; Jiang, X. Chem. Commun., 2019, 55, 14299.
[7] (a) Banerjee, S.; Khatri, H.; Balasanthiran, V.; Koodali, R. T.; Sereda, G. Tetrahedron 2011, 67, 5717.
(b) Ranu, B. C.; Adak, L.; Chattopadhyay, K. J. Org. Chem. 2008, 73, 5609.
(c) Kimura, T.; Nishimura, Y.; Ishida, N.; Momochi, H.; Yamashita, H.; Satoh, T. Tetrahedron Lett. 2013, 54, 1049.
[8] (a) Bao, Y.; Yang, X.; Zhou, Q.; Yang, F. Org. Lett. 2018, 20, 1966.
(b) Lin, Y.; Lu, G.; Cai, C.; Yi, W. Org. Lett. 2015, 17, 3310.
[9] Li, J. H.; Tang, S. Synth. Commun. 2005, 35, 105.
[10] (a) Liang, Y.; Tao, L.-M.; Zhang, Y.-H.; Li, J.-H. Synthesis 2008, 3988.
(b) Raff, G.; Belot, S.; Balme, G.; Monteiro, N. Org. Biomol. Chem. 2011, 9, 1474.
[11] Schuh, K.; Glorius, F. Synthesis 2007, 2297.
[12] Shen, G.; Yang, B.; Huang, X.; Hou, Y.; Gao, H.; Cui, J.; Cui, C.; Zhang, T. J. Org. Chem. 2017, 82, 3798.
[13] Woodward, S.; Ackermann, M.; Ahirwar, S. K.; Burroughs, L.; Garrett, M. R.; Ritchie, J.; Shine, J.; Tyril, B.; Simpson, K.; Woodward, P. Chem. Eur. J. 2017, 3, 7819.
[14] (a) Sun, A.; Lauher, J. W.; Goroff, N. S. Science 2006, 312, 1030.
(b) DeCicco, R. C.; Luo, L.; Goroff, N. S. Acc. Chem. Res. 2019, 52, 2080.
[15] Terent'ev, A. O.; Borisov, D. A.; Krylov, I. B.; Nikishin, G. I. Synth. Commun. 2007, 37, 3151.
[16] (a) Dolbier, W. R.; Duan, J.-X.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486.
(b) Li, J.-H.; Tang, S. Synth. Commun. 2005, 35, 105.
(c) Su, L.; Lei, C.-Y.; Fan, W.-Y.; Liu, L.-X. Synth. Commun. 2011, 41, 1200.
[17] (a) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. Green Chem. 2002, 4, 505.
(b) Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35.
(c) Song, S.; Li, X.; Wei, J.; Wang, W.; Zhang, Y.; Ai, L.; Zhu, Y.; Shi, X.; Zhang, X.; Jiao, N. Nat. Catal. 2020, 3, 107.
[18] Banothu, R.; Peraka, S.; Kodumuri, S.; Chevella, D.; Gajula, K. S.; Amrutham, V.; Yennamaneni, D. R.; Nama, N. New J. Chem. 2018, 42, 17879.
[19] Stavber, S.; Stavber, G.; Iskra, J.; Zupan, M. Adv. Synth. Catal. 2008, 350, 2921.
[20] Guo, C.-C.; Jiang, Q.; Wang, J.-Y. Synthesis 2015, 47, 2081.
[21] (a) Liu, Y.; Maruoka, K.; Huang, D.-Y.; Huang, J. J. Org. Chem. 2017, 82, 11865.
(b) Kashyap, S.; Rao D. S.; Reddy, T. R. Org. Biomol. Chem. 2018, 16, 1508.
[22] Madabhushi, S.; Jillella, R.; Mallu, K. K. R.; Golada, K. R.; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993.
[23] Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Chem. Commun. 2011, 47, 4013.
Outlines

/