Ni(II)-Catalyzed Oxidative Coupling of Arenes

  • Wu Jieqing ,
  • Gu Jiefan ,
  • Chen Qinrui ,
  • Ma Hongfei ,
  • Li Yufeng
Expand
  • College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816

Received date: 2020-05-26

  Revised date: 2020-06-19

  Online published: 2020-07-17

Abstract

A protocol for the synthesis of bibenzyls via nickel acetylacetonate-catalyzed coupling of arenes was devloped using di-tert-butylperoxide as the oxidant with the asistance of 1,4-diazabicyclo[2.2.2]octane (DABCO). The process tolerated to different substrates, among of which, isopropylbenzene provided the most satisfactory yield of bibenzyls in 73% yield. The cross-coupling of arenes with cycloalkanes was also realized under the optimal reaction conditions but accompanied with the self-coupling of substrates. The method could effectively restrain the formation of alcohol, aldehyde, acid.

Cite this article

Wu Jieqing , Gu Jiefan , Chen Qinrui , Ma Hongfei , Li Yufeng . Ni(II)-Catalyzed Oxidative Coupling of Arenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2772 -2777 . DOI: 10.6023/cjoc202005073

References

[1] (a) Speicher, A.; Groh, M.; Hennrich, M.; Huynh, A. Eur. J. Org. Chem. 2010, 35, 6760.
(b) Asakawa, Y.; Lin, X. H.; Kondo, K.; Fukuyama, Y. Phytochemistry 1991, 30, 4019.
(c) Park, B. H.; Lee, Y. R.; Kim, S. H. Bull. Korean Chem. Soc. 2011, 32, 566.
(d) Asakawa, Y.; Toyota, M.; Tori, M.; Hashimoto, T. Spectroscopy 2000, 14, 149.
[2] (a) Song, J. X.; Shaw, P. C.; Wong, N. S.; Sze, C. W.; Yao, X. S.; Tang, C. W.; Tong, Y.; Zhang, Y. B. Neurosci. Lett. 2012, 521, 76.
(b) Lee, K. Y.; Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2006, 69, 679.
(c) Kim, K. H.; Kim, M. A.; Moon, E.; Kim, S. Y.; Choi, S. Z.; Son, M. W.; Lee, K. R. Bioorg. Med. Chem. Lett. 2011, 21, 2075.
[3] (a) Chen, Y.; Xu, J. J.; Yu, H.; Qing, C.; Zhang, Y. L.; Wang, L. Q.; Liu, Y.; Wang, J. H. Food Chem. 2008, 107, 169.
(b) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34, 2579.
(c) Guo, D. X.; Xiang, F.; Wang, X. N.; Yuan, H. Q.; Xi, G. M.; Wang, Y. Y.; Yu, W. T.; Lou, H. X. Phytochemistry 2010, 71, 1573.
[4] (a) Kostecki, K.; Engelmeier, D.; Pacher, T.; Hofer, O.; Vajrodaya, S.; Greger, H. Phytochemistry 2004, 65, 99.
(b) Lin, L. G.; Yang, X. Z.; Tang, C. P.; Ke, C. Q.; Zhang, J. B.; Ye, Y. Phytochemistry 2008, 69, 457.
(c) Boonphong, S.; Puangsombat, P.; Baramee, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2007, 70, 795.
[5] (a) Hwang, J. S.; Lee, S. A.; Hong, S. S.; Han, X. H.; Lee, C.; Kang, S. J.; Lee, D.; Kim, Y.; Hong, J. T.; Lee, M. K.; Hwang, B. Y. Bioorg. Med. Chem. Lett. 2010, 20, 3785.
(b) Adams, M.; Pacher, T.; Greger, H.; Bauer, R. J. Nat. Prod. 2005, 68, 83.
[6] Song, J. X.; Shaw, P. C.; Sze, C. W.; Tong, Y.; Yao, X. S.; Ng, T. B.; Zhang, Y. B. Neurochem. Int. 2010, 57, 676.
[7] (a) Zhang, Y. L.; Guo, D. X.; Wang, L.; Lou, H. X. Chin. J. Nat. Med. 2010, 8, 177.
(b) Xu, F. Q.; Xu, F. C.; Hou, B.; Fan, W. W.; Zi, C. T.; Li, Y.; Dong, F. W.; Liu, Y. Q.; Sheng, J.; Zuo, Z. L.; Hu, J. M. Bioorg. Med. Chem. Lett. 2014, 24, 5268.
[8] (a) Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756.
(b) Zhu, Y. G.; Xiong, T.; Han, W. Y.; Shi, Y. A. Org. Lett. 2014, 16, 6144.
(c) Barrero, A. F.; Herrador, M. M.; Quilez, J. F.; Arteaga, P.; Akssira, M.; Hanbali, F.; Arteaga, J. F.; Dieguez, H. R.; Sanchez, E. M. J. Org. Chem. 2007, 72, 2251.
(d) Levin, V. V.; Agababyan, D. P.; Struchkova, M. I.; Dilman, A. D. Synthesis 2018, 50, 2930.
(e) Chen, T.; Yang, L. M.; Li, L.; Huang, K. W. Tetrahedron 2012, 68, 6152.
(f) Ramesh, N.; Prakash, C.; Sureshbabu, R.; Dhayalan, V.; Mohanakrishnan, A. K. Tetrahedron 2008, 64, 2071.
(g) Eisch, J. J.; Dutta, S. Organometallics 2004, 23, 4181.
[9] (a) Zartman, W. H.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 1668.
(b) Horning, E. C.; Reisner, D. B. J. Am. Chem. Soc. 1949, 71. 1036.
(c) Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2001, 57, 4817.
(d) Ranaweera, A. A. U.; Zhao, Y.; Muthukrishnan, S.; Keller, C.; Gudmundsdottir, A. D. Aust. J. Chem. 2010, 63, 1645.
(e) Zhao, X. J.; Zhao, Y.; Fu, G.; Zheng, N. F. Chem. Commun. 2015, 51, 12016.
(f) Nash, D. J.; Restrepo, D. T.; Parra, N. S.; Giesler, K. E.; Penabade, R. A.; Aminpour, M.; Le, D.; Li, Z. Y.; Farha, O. K.; Harper, J. K.; Rahman, T. S.; Blair, R. G. ACS Omega 2016, 1, 1343.
(g) Buschelberger, P.; Gartner, D.; Rodriguez, E. R.; Kreyenschmidt, F.; Koszinowski, K.; Wangelin, A. J. V.; Wolf, R. Chem.-Eur. J. 2017, 23, 3139.
(h) Patel, H. A.; Rawat, M.; Patel, A. L.; Bedekar, A. V. Appl. Organomet. Chem. 2019, 33, e4767.
[10] Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
[11] (a) House, H. O.; Sheehan, J. C.; Iannicelli, J. Org. Synth. 1954, 34, 35.
(b) Fuson, R. C.; House, H. O. J. Am. Chem. Soc. 1953, 75, 1325.
(c) Tullock, C. W.; Coffman, D. D. J. Org. Chem. 1960, 25, 2016.
(d) Rinkenbach, W. H.; Aaronson, H. A. J. Am. Chem. Soc. 1930, 52, 5040.
(e) Khurana, J. M.; Maikap, G. C.; Mehta, S. Synthesis 1990, 731.
(f) Vasilopoulos, A.; Zultanski, S. L.; Stahl, S. S. J. Am. Chem. Soc. 2017, 139, 7705.
(g) Guo, X. Y.; Li, C. J. Org. Lett. 2011, 13, 4977.
(h) Capocasa, G.; Olivo, G.; Barbieri, A.; Lanzalunga, O.; Stefano, D. S. Catal. Sci. Technol. 2017, 7, 5677.
(i) Kumar, P.; Guntreddi, T.; Singh, R.; Singh, K. N. Org. Chem. Front. 2017, 4, 147.
(j) Minisci, F.; Vismara, E.; Morini, G.; Fontana, F.; Levi, S.; Serravalle, M. J. Org. Chem. 1986, 51, 476.
(k) Furukawa, S.; Shishido, T.; Teramura, K.; Tanaka, T. J. Phys. Chem. C 2011, 115, 19320.
(l) Blangetti, M.; Fleming, P.; Shea, D. F. J. Org. Chem. 2012, 77, 2870.
(m) Sahoo, S. K. Tetrahedron Lett. 2016, 57, 3476.
(n) Chen, H.; Chen, Y. C.; Zhang, Y. L.; Yang, Z. Q.; Li, J.; Yang, R. N.; Wang, W. X. J. Chem. Res. 2017, 41, 473.
(o) Wang, Z. J.; Lv, J. J.; Yi, R. N.; Xiao, M.; Feng, J. J.; Liang, Z. W.; Wang, A. J.; Xu, X. H. Adv. Synth. Catal. 2018, 360, 932.
(p) Xu, L. G.; Huang, Y.; Liu, B. G.; Niu, Y. H.; Huo, X. Chin. J. Org. Chem. 2018, 38, 812(in Chinese). (徐利革, 黄亿, 刘炳艮, 牛云宏, 火星, 有机化学, 2018, 38, 812.)
(q) Liu, D.; Zhang, C. H.; Han, N.; Du, M. M.; Zhang, X. L.; Zhao, P. S.; Yang, P. Chin. J. Org. Chem. 2018, 38, 1350(in Chinese). (刘迪, 张成慧, 韩楠, 杜萌萌, 张效露, 赵朋杉, 杨萍, 有机化学, 2018, 38, 1350.)
(r) Yan, Y. Z.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501(in Chinese). (闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)
(s) Lu, F. L.; Yang, Z. Z.; Wang, T.; Wang, T. H.; Zhang, Y. Y.; Yuan, Y.; Lei, A. W. Chin. J. Chem. 2019, 37, 547.
(t) Hu, W. G.; Zheng, J.; Li, M.; Wu, W. Q.; Liu, H. Y.; Jiang, H. F. Chin. J. Chem. 2018, 36, 712.
[12] (a) Cermenati, L.; Fagnoni, M.; Albini, A. Can. J. Chem. 2003, 81, 560.
(b) Yin, H. L.; Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.; Manor, B. C.; Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 16266.
(c) Deng, H. P.; Fan, X. Z.; Chen, Z. H.; Xu, Q. H.; Wu, J. J. Am. Chem. Soc. 2017, 139, 13579.
(d) Park, G.; Yi, S. Y.; Jung, J. J.; Cho, E. J.; You, Y. M. Chem.-Eur. J. 2016, 22, 17790.
(e) Mclean, E. B.; Gauchot, V.; Brunen, S.; Burns, D. J.; Lee, A. L. Chem. Commun. 2019, 55, 4238.
[13] (a) Sun, W.; Gao, L. F.; Feng, X.; Sun, X.; Zheng, G. X. Eur. J. Org. Chem. 2018, 2018, 1121.
(b) Song, C. E.; Lee, S. L. Chem. Rev. 2002, 102, 3495.
(c) Du, J. P.; Qu, Z. P.; Dong, C.; Song, L. X.; Qin, Y.; Huang, N. Appl. Surf. Sci. 2018, 433, 1025.
[14] (a) Mahyari, M.; Laeini, M. S.; Shaabani, A. Chem. Commun. 2014, 50, 7855.
(b) Verma, S.; Nasir, R. B.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.
[15] (a) Ping, K. F.; Alam, M.; Kaarik, M.; Leis, J.; Kongi, N.; Jarving, I.; Starkov, P. Synlett 2019, 30, 1536.
(b) Karimpour, T.; Safaei, E.; Karimi, B. RSC Adv. 2019, 9, 14343.
(c) Hu, P. H.; Tan, M. X.; Cheng, L.; Zhao, H. Y.; Feng, R.; Gu, W. J.; Han, W. Nat. Commun. 2019, 10, 2425.
[16] Liu, L. C.; Wu, J. Q.; Ma, H. F.; Zhang, H.; Gu, J. F.; Li, Y. F. Chin. J. Org. Chem. 2019, 39, 1688(in Chinese). (刘立策, 吴杰庆, 马鸿飞, 张晗, 顾洁凡, 李玉峰, 有机化学, 2019, 39, 1688.)
[17] Li, J. S.; Luo, Y. X.; Cheo, H. W.; Lan, Y.; Wu, J. Chem 2019, 5, 192.
[18] Waters, W. A.; Waston, D. H. J. Chem. Soc. 1957, 253.
[19] Leonard, E. C. J. Org. Chem. 1962, 27, 1921.
[20] Atsuko, N.; Tadahiro, K. Chem. Pharm. Bull. 1990, 38, 1720.
[21] Banks, R. E.; Madany, M. I. J. Fluorine Chem. 1985, 30, 211.
[22] Overberger, C. G.; Marullo, N. P.; Hiskey, R. G. J. Am. Chem. Soc. 1961, 83, 1374.
[23] Ellingboe, E.; Fuson, R. C. J. Am. Chem. Soc. 1933, 55, 2960.
[24] Hartmann, R. W.; Heindl, A.; Schwarz, W.; Schoenenberger, H. J. Med. Chem. 1984, 27, 819.
[25] Carlisle, C. H.; Crowfoot, D. J. Chem. Soc. 1941, 6.
[26] Kataoka, Y.; Makihira, I.; Utsunomiya, M.; Tani, K. J. Org. Chem. 1997, 62, 8540.
[27] Liu, J.; Li, B. Synth. Commun. 2007, 37, 3273.
[28] Johnston, K. M.; Williams, G. H. J. Chem. Soc. 1960, 1168.
[29] Zhu, D. H.; Lv, L. Y.; Qiu, Z. H.; Li, C. J. J. Org. Chem. 2019, 84, 6312.
[30] Liu, D.; Li, Y. X.; Qi, X. T.; Liu, C.; Lan, Y.; Lei, A. W. Org. Lett. 2015, 17, 998.
Outlines

/