Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors

  • Yang Wenchao ,
  • Zhang Mingming ,
  • Chen Wang ,
  • Yang Xiaohu ,
  • Feng Jianguo
Expand
  • a School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009;
    b Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013

Received date: 2020-05-16

  Revised date: 2020-06-12

  Online published: 2020-07-23

Supported by

Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 19KJB150020), the Natural Science Foundation for Young Scholars of Jiangsu Province (Nos. BK20170489, BK20190900) and the Agricultural Science and Technology Innovation Fund (No. CX(19)3112).

Abstract

Sulfur-containing heterocyclic compounds such as thiazole, thiophene, thiopyrone, widely exist in numerous natural products and biologically active molecules. Developing of effective strategies for the formation of sulfur-containing heterocycles has become a popular research hotspot. Meanwhile, the free-radical cascade reaction of unsaturated bonds in the synthesis of heterocycle has always been an important branch of synthetic chemistry, and the achieved progresses in recent years have also demonstrated its huge potential. Researchers found that sulfur atom could act as radical acceptors to build a C-S bond, and established a series of free radical reactions through this strategy. Among them, the radical cascade reactions of anisole derivatives have been gradually developed into an important synthetic tool toward sulfur-containing heterocycles. The recent advances in the field of radical-initiated reactions of anisoles for the construction of sulfur-containing heterocycles, in which sulfur atoms play as radical acceptors, are summarized. In addition, the reaction design, mechanism and applicability of sulfur-containing heterocyclic compounds via radical cyclization towards the synthesis of complex molecules are also covered.

Cite this article

Yang Wenchao , Zhang Mingming , Chen Wang , Yang Xiaohu , Feng Jianguo . Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4060 -4070 . DOI: 10.6023/cjoc202005039

References

[1] (a) Mishra, R.; Sachan, Neetu.; Kumar, N.; Mishra, I.; Chand, P. J. Heterocycl. Chem. 2018, 55, 2019.
(b) Zhao, F.; Hu, Y.; Li, Q.; Hu, S. Chin. J. Org. Chem. 2020, 40, 1068(in Chinese). (赵芳, 胡洋, 李巧, 胡胜利, 有机化学, 2020, 40, 1068.)
(c) He, W.; Liu, D.; Gan, X.; Zhang, J.; Liu, Z.; Yi, C.; Song, B. Chin. J. Org. Chem. 2019, 39, 2287(in Chinese). (何文静, 刘登曰, 甘秀海, 张建, 刘峥军, 易崇粉, 宋宝安, 有机化学, 2019, 39, 2287.)
(d) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
(e) Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B. Mater. Chem. Front. 2018, 2, 1853.
[2] (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
(b) Liu, H.; Jiang, X. Chem.-Asian J. 2013, 8, 2546.
[3] (a) Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.; Shang, J.; Chen, G.-Y.; Zheng, C. Chem. Commun. 2020, 56, 4164.
(b) Vara, B. A.; Li, X.; Berritt, S.; Walters, C. R.; Petersson, E. J.; Molander, G. A. Chem. Sci. 2018, 9, 336.
[4] Zhu, X.; Xie, X.; Li, P.; Guo, J.; Wang, L. Org. Lett. 2016, 18, 1546.
[5] Zan, N.; Xie, D.; Li, M.; Jiang, D.; Song, B. J. Agric. Food Chem. 2020, 68, 6280.
[6] Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390.
[7] (a) McDonald, F. E.; Burova, S. A.; Huffman, L. G. Jr. Synthesis 2000, 970.
(b) Staples, M. K.; Grange, R. L.; Angus, J. A.; Ziogas, J.; Tan, N. P. H.; Taylor, M. K.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 473.
[8] (a) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2019, 62, 24.
(b) Shang, T.; Lu, L.; Cao, Z.; Liu, Y.; He, W.; Yu, B. Chem. Commun. 2019, 55, 5408.
(c) Xu, C.-H.; Li, Y.; Li, J.-H.; Xiang, J.-N.; Deng, W. Sci. China:Chem. 2019, 62, 1463.
(d) Yang, W.-C.; Feng, J.-G.; Wu, L.; Zhang, Y.-Q. Adv. Synth. Catal. 2019, 361, 1700.
(e) Li, D.; Yang, W.-C. Tetrahedron Lett. 2019, 60, 1792.
(f) Zhang, Y.; Sun, K.; Lv, Q.; Chen, X.; Qu, L.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
(g) Ruan, L.; Liu, C.; Sun, J.; Zhou, M. Chin. J. Org. Chem. 2019, 39, 2403(in Chinese). (阮利衡, 刘畅, 孙京, 周明东, 有机化学, 2019, 39, 2403.)
(h) Xiong, L.; Hu, H.; Wei, C.-W.; Yu, B. Eur. J. Org. Chem. 2020, 1588.
[9] Luo, K.; Yang, W.-C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
[10] (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911.
(b) Wu, Y.; Chen, J.-Y.; Li, Q.; Wei, W.-T. Chin. J. Org. Chem. 2020, 40, 589(in Chinese). (吴燕, 陈锦杨, 李强, 魏文廷, 有机化学, 2020, 40, 589.)
[11] Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334.
[12] Zang, H.; Sun, J.-G.; Dong, X.; Li, P.; Zhang, B. Adv. Synth. Catal. 2016, 358, 1746.
[13] (a) Zhu, J.; Yang, W.-C.; Wang, X.-D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
(b) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013.
(c) Yang, W.-C.; Dai, P.; Luo, K.; Wu, L. Adv. Synth. Catal. 2016, 358, 3184.
(d) Qiu, G.; Zhou, K.; Wu, J. Chem. Commun. 2018, 54, 12561.
[14] Xu, J.; Yu, X.; Yan, J.; Song, Q. Org. Lett. 2017, 19, 6292.
[15] Yan, J.; Xu, J.; Zhou, Y.; Chen, J.; Song, Q. Org. Chem. Front. 2018, 5, 1483.
[16] Liu, W.; Hu, Y.-Q.; Hong, X.-Y.; Li, G.-X.; Huang, X.-B.; Gao, W.-X.; Liu, M.-C.; Xia, Y.-Z.; Zhou, Y.-B.; Wu, H.-Y. Chem. Commun. 2018, 54, 14148.
[17] An, C.; Li, C.-Y.; Huang, X.-B.; Gao, W.-X.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 6710.
[18] Ye, S.; Yang, M.; Wu, J. Chem. Commun. 2020, 56, 4145.
[19] Gong, X.; Wang, M.; Ye, S.; Wu, J. Org. Lett. 2019, 21, 1156.
[20] Gao, Y.; Tang, G.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 62(in Chinese). (高玉珍, 唐果, 赵玉芬, 有机化学, 2018, 38, 62.)
[21] Cai, T.; Liu, J.; Zhang, H.; Wang, X.; Feng, J.; Shen, R.; Gao, Y. Org. Lett. 2019, 21, 4605.
[22] (a) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
(b) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
(c) Lei, J.; Huang, J.; Zhu, Q. Org. Biomol. Chem. 2016, 14, 2593.
(d) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 3223.
(e) Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.
[23] Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L. Org. Lett. 2018, 20, 3144.
[24] Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.
[25] Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 469.
[26] Liu, Y.; Chen, X.-L.; Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 4019.
[27] Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.
[28] Luo, K.; Yang, W.-C.; Wei, K.; Liu, Y.; Wang, J.-K.; Wu, L. Org. Lett. 2019, 21, 7851.
[29] Yu, J.-X.; Niu, S.; Hu, M.; Xiang, J.-N.; Li, J.-H. Chem. Commun. 2019, 55, 6727.
[30] Qin, J.-H.; Yu, J.-X.; Li, J.-H.; An, D.-L. Adv. Synth. Catal. 2019, 361, 3974.
[31] Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J. Chem. Commun. 2018, 54, 10791.
[32] Gao, Y.; Zhang, P.; Li, G.; Zhao, Y. J. Org. Chem. 2018, 83, 13726.
[33] (a) Xu, J.; Zhang, F.; Zhang, S.; Zhang, L.; Yu, X.; Yan, J.; Song, Q. Org. Lett. 2019, 21, 1112.
(b) Xu, J.; Zhang, S.; Luo, Y.; Zhang, L.; Zhang, F.; Huang, T.; Song, Q. Acta Chim. Sinica 2019, 77, 932(in Chinese). (许健, 张世樊, 罗莹, 张荔, 张帆, 黄挺菁, 宋秋玲, 化学学报, 2019, 77, 932.)
[34] Wang, L.; Wang, H.; Meng, W.; Xu, X.; Huang, Y. Chin. Chem. Lett. 2020, DOI:10.1016/j.cclet.2020.02.040.
[35] (a) Liu, X.-C.; Chen, X.-L.; Liu, Y.; Sun, K.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. ChemSusChem 2020, 13, 298.
(b) Jiang, Y.-Q.; Li, J.; Feng, Z.-W.; Xu, G.-Q.; Shi, X.; Ding, Q.-J.; Li, W.; Ma, C.-H.; Yu, B. Adv. Synth. Catal. 2020, 362, 2609.
Outlines

/