Visible-Light-Promoted Ir(III)-Catalyzed ZE Isomerization of Monofluorostilbenes

  • Zhang Qi-Qi ,
  • Lin Peng-Peng ,
  • Yang Ling ,
  • Tan Dong-Hang ,
  • Feng Si-Xin ,
  • Wang Honggen ,
  • Li Qingjiang
Expand
  • a Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006;
    b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191

Received date: 2020-05-19

  Revised date: 2020-07-10

  Online published: 2020-07-23

Supported by

Project supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011322), the Fundamental Research Funds for the Central Universities (No. 19ykpy124), the National Natural Science Foundation of China (No. 81930098), the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (No. 2019B030301005), and the State Key Laboratory of Natural and Biomimetic Drugs, Peking University (No. K20170210).

Abstract

A photocatalytic Z to E isomerization of monofluorostilbenes in the presence of visible light (blue LEDs) has been developed. The transformation, which proceeds through a selective energy transfer pathway with Ir(Ⅲ) complex, offers facile access to thermodynamically less stable E-monofluoroalkenes with synthetically useful efficiency (up to 96% yield, up to 91:9 E:Z). Mild reaction conditions, good functional groups tolerance, and broad substrate scope were observed. Furthermore, the synthetic utility of this method is demonstrated by the rapid synthesis of monofluorinated cis-DMU-212 analogue E-30.

Cite this article

Zhang Qi-Qi , Lin Peng-Peng , Yang Ling , Tan Dong-Hang , Feng Si-Xin , Wang Honggen , Li Qingjiang . Visible-Light-Promoted Ir(III)-Catalyzed ZE Isomerization of Monofluorostilbenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3314 -3326 . DOI: 10.6023/cjoc202005048

References

[1] (a) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D. M.; Santi, C.; Ruzziconi, R.; Soloshonok, V. A. Chem. Eur. J. 2019, 25, 11797.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, Wiley-VCH, Weinheim, 2004.
[2] (a) Edmondson, S. D.; Wei, L.; Xu, J.; Shang, J.; Xu, S.; Pang, J.; Chaudhary, A.; Dean, D. C.; He, H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.; Scapin, G.; Wu, J. K.; Beconi, M. G.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2008, 18, 2409.
(b) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.
(c) Kanazawa, J.; Takahashi, T.; Akinaga, S.; Tamaoki, T.; Okabe, M. Anti-Cancer Drugs 1998, 9, 653.
(d) Deng, T.; Shan, S.; Li, Z.-B.; Wu, Z.-W.; Liao, C.-Z.; Ko, B.; Lu, X.-P.; Cheng, J.; Ning, Z.-Q. Biol. Pharm. Bull. 2005, 28, 1192.
[3] (a) Jakobsche, C. E.; Choudhary, A.; Miller, S. J.; Raines, R. T. J. Am. Chem. Soc. 2010, 132, 6651.
(b) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
(c) Asahina, Y.; Iwase, K.; Iinuma, F.; Hosaka, M.; Ishizaki, T. J. Med. Chem. 2005, 48, 3194.
[4] (a) Fustero, S.; Simón-Fuentes, A.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
(b) Dolbier Jr., W. R. Acc. Chem. Res. 1991, 24, 63.
[5] For reviews, see: (a) Drouin, M.; Hamel, J.-D.; Paquin, J.-F. Synthesis 2018, 50, 881.
(b) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867. For selected recent examples, see:
(c) Li, C.; Cao, Y.-X.; Jin, R.-X.; Bian, K.-J.; Qin, Z.-Y.; Lan, Q.; Wang, X.-S. Chem. Sci. 2019, 10, 9285.
(d) Kondoh, A.; Koda, K.; Terada, M. Org. Lett. 2019, 21, 2277.
(e) Li, T.; Zhou, C.; Yan, X.; Wang, J. Angew. Chem., Int. Ed. 2018, 57, 4048.
(f) Yu, L.; Tang, M.-L.; Si, C.-M.; Meng, Z.; Liang, Y.; Han, J.; Sun, X. Org. Lett. 2018, 20, 4579.
(g) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
(h) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
(i) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
(j) Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
(k) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.
[6] (a) Mandal, D.; Gupta, R.; Young, R. D. J. Am. Chem. Soc. 2018, 140, 10682.
(b) Zhou, Y.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 10444.
(c) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.
(d) Ghosh, A. K. Zajc, B. Org. Lett. 2006, 8, 1553.
[7] Chen, C.; Wilcoxen, K.; Huang, C. Q.; Strack, N.; McCarthy, J. R. J. Fluorine Chem. 2000, 101, 285.
[8] (a) O'Hagan, D.; Rzepa, H. S.; Schüler, M.; Slawin, A. M. Z. Beilstein J. Org. Chem. 2006, 2, DOI:10.1186/1860-5397-2-19.
(b) Baciocchi, E.; Ruzziconi, R. J. Org. Chem. 1984, 49, 3395.
[9] (a) Petasis, N.; Yudin, A. K.; Zavialov, I. A.; Prakash, G. K. S.; Olah, G. A. Synlett 1997, 606.
(b) Ranjbar-Karimi, R. Ultrason. Sonochem. 2010, 17, 768.
[10] Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.
[11] For selected examples, see: (a) Hammond, G. S.; Saltiel, J. J. Am. Chem. Soc. 1962, 84, 4983.
(b) Saltiel, J.; Hammond, G. S. J. Am. Chem. Soc. 1963, 85, 2515.
(c) Hammond, G. S.; Saltiel, J.; Lamola, A. A.; Turro, N. J.; Bradshaw, J. S.; Cowan, D. O.; Counsell, R. C.; Vogt, V.; Dalton, C. J. Am. Chem. Soc. 1964, 86, 3197.
(d) Liu, R. S. H.; Turro Jr., N. J.; Hammond, G. S. J. Am. Chem. Soc. 1965, 87, 3406.
(e) Herkstroeter, W. G.; Hammond, G. S. J. Am. Chem. Soc. 1966, 88, 4769.
[12] (a) Arai, T.; Sakuragi, H.; Tokumaru, K. Chem. Lett. 1980, 9, 261.
(b) Arai, T.; Sakuragi, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. 1982, 55, 2204.
[13] (a) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2015, 137, 11254.
(b) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.
(c) Metternich, J. B.; Artiukhin, D. G.; Holland, M. C.; von Bremen-Kühne, M.; Neugebauer, J.; Gilmour, R. J. Org. Chem. 2017, 82, 9955.
(d) Molloy, J. J.; Metternich, J. B.; Daniliuc, C. G.; Watson, A. J. B.; Gilmour, R. Angew. Chem., Int. Ed. 2018, 57, 3168.
(e) Faßbender, S. I.; Metternich, J. B.; Gilmour, R. Org. Lett. 2018, 20, 724.
(f) Faßbender, S. I.; Molloy, J. J.; Mück-Lichtenfeld, C.; Gilmour, R. Angew. Chem., Int. Ed. 2019, 58, 18619.
[14] (a) Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 5275.
(b) Singh, A.; Fennell, C. J.; Weaver, J. D. Chem. Sci. 2016, 7, 6796.
(c) Day, J. I.; Singh, K.; Trinh, W.; Weaver, J. D. J. Am. Chem. Soc. 2018, 140, 9934.
[15] (a) Zhao, Y.-P.; Yang, L.-Y.; Liu, R. S. H. Green Chem. 2009, 11, 837.
(b) Fabry, D. C.; Ronge, M. A.; Rueping, M. Chem. Eur. J. 2015, 21, 5350.
(c) Rackl, D.; Kreitmeier, P.; Reiser, O. Green Chem. 2016, 18, 214.
(d) Cai, W.; Fan, H.; Ding, D.; Zhang, Y.; Wang, W. Chem. Commun. 2017, 53, 12918.
(e) Zhan, K.; Li, Y. Catalysis 2017, 7, 337.
(f) Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Org. Biomol. Chem. 2017, 15, 6349.
(g) Nakajima, K.; Guo, X.; Nishibayashi, Y. Chem. Asian J. 2018, 13, 3653.
(h) Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 6152.
[16] (a) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Modern Molecula Photochemistry of Organic Molecules, University Science Books, Sausalito, CA, 2010.
(b) Metternich, J. B.; Gilmour, R. Synlett 2016, 27, 2541.
(c) Zhang, H.; Yu, S. Chin. J. Org. Chem. 2019, 39, 95(in Chinese). (张昊, 俞寿云, 有机化学, 2019, 39, 95.)
[17] Caldwell, R. A.; Zhou, L. J. Am. Chem. Soc. 1994, 116, 2271.
[18] (a) Zhang, Q.-Q.; Chen, S.-Y.; Lin, E.; Wang, H.; Li, Q. Org. Lett. 2019, 21, 3123.
(b) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Org. Lett. 2018, 20, 1924.
(c) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Catal. 2018, 360, 1032.
[19] For selected works on C-F functionalization of trifluoromethyl arenes, see: (a) Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203.
(b) Dang, H.; Whittaker, A. M.; Lalic, G. Chem. Sci. 2016, 7, 505.
(c) Saboureau, C.; Troupel, M.; Sibille, S.; Périchon, J. J. Chem. Soc., Chem. Commun. 1989, 1138.
[20] (a) Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
(b) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320.
(c) Zell, D.; Müller, V.; Dhawa, U.; Bursch, M.; Presa, R. R.; Grimme, S.; Ackermann, L. Chem. Eur. J. 2017, 23, 12145.
[21] Lewis, F. D.; Howard, D. K.; Oxman, J. D.; Upthagrove, A. L.; Quillen, S. L. J. Am. Chem. Soc. 1986, 108, 5964.
[22] (a) Gosslau, A.; Pabbaraja, S.; Knapp, S.; Chen, K. Y. Eur. J. Pharmacol. 2008, 587, 25.
(b) Sale, S.; Verschoyle, R. D.; Boocock, D.; Jones, D. J. L.; Wilsher, N.; Ruparelia, K. C.; Potter, G. A.; Farmer, P. B.; Steward, W. P.; Gescher, A. J. Br. J. Cancer 2004, 90, 736.
[23] Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
[24] For very recent reviews on photocatalysis energy transfer processes, see: (a) Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 1586.
(b) Strieth-Kalthoff, F.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Chem. Soc. Rev. 2018, 47, 7190.
(c) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
[25] Xu, J.; Burton, D. J. J. Org. Chem. 2006, 71, 3743.
Outlines

/