Nickel-Catalyzed Regioselective Coupling Reaction of 3,3,3-Trifluoropropene with Arylzinc Reagents

  • Cheng Ran ,
  • Xu Chang ,
  • Zhang Xingang
Expand
  • Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-05-29

  Revised date: 2020-06-17

  Online published: 2020-07-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21931013, 21672238, 21421002), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

Abstract

3,3,3-Trifluoropropene (TFP) is an inexpensive and bulk industrial material and has important applications in the production of fluorinated polymers, refrigerant and so on. The use of TFP as a fluorine source enables access to a variety of fluorinated compounds. To date, important progress has been made in the transformations of TFP, however, most of the developed methods focused on the functionalization of carbon-carbon double bond of TFP. The controllable formation of fluorinated products via regio-selective functionalization of TFP received less attention. Herein, a nickel-catalyzed regioselective coupling of TFP with arylzinc reagents is described. By fine-tuning the reaction solvent, two different types of fluorinated products, gem-difluoroalkenes and Heck-type aryl-substituted TFPs, were obtained. The use of dioxane as the solvent led to a series of gem-difluoroalkenes in moderate to good yields with high regio-selectivity and functional group tolerance under mild reaction conditions. While, switching solvent from dioxane to N,N-dimethylformamide (DMF), the Heck-type aryl-substituted TFPs were obtained. This regioselective coupling provides an efficient route for applications of TFP in organic synthesis.

Cite this article

Cheng Ran , Xu Chang , Zhang Xingang . Nickel-Catalyzed Regioselective Coupling Reaction of 3,3,3-Trifluoropropene with Arylzinc Reagents[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3307 -3313 . DOI: 10.6023/cjoc202005082

References

[1] (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
(b) Groult, H.; Leroux, F. R.; Tressaud, A. Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Elsevier, Amsterdam, 2017.
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[2] (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) O' Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
(c) Zhang, F.-G.; Peng, X.; Ma, J.-A. Chin. J. Org. Chem. 2019, 39, 109(in Chinese). (张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
(d) Huang, H.; Wang, X.; Wang, J.-B. Chin. J. Org. Chem. 2019, 39, 1(in Chinese). (黄航, 王兮, 王剑波, 有机化学, 2019, 39, 1.)
(e) Zhang, P.-P.; Lu, L.; Shen, Q.-L. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
(f) Yang, Y.; You, Z.; Qing, F.-L. Acta Chim. Sinica 2012, 70, 2323(in Chinese). (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)
[3] (a) Feng, Z.; Xiao, Y.-L.; Zhan,g X.-G. Acc. Chem. Res. 2018, 51, 2264.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(c) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328,1679.
(d) An, L.; Tong, F.-F.; Zhang, X.-G. Acta Chim. Sinica 2018, 76, 977(in Chinese). (安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
(e) Gao, X.; He, X.; Zhang, X.-G. Chin. J. Org. Chem. 2019, 39, 215(in Chinese).
(f) Xiao, Y.-L.; Pan, Q.; Zhang, X.-G. Acta Chim. Sinica 2015, 73, 383(in Chinese). (肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383.)
[4] (a) Kirsch, P. Modern Fluoroorganic Chemistry, 2nd ed., Wiley-VCH Verlag GmbH. & KGaA., Weinheim, 2013.
(b) Zhang, H. Organo-Fluorine Industry 2003, (3), 20(in Chinese). (张亨, 有机氟工业, 2003, (3), 20.)
[5] (a) Zhang, H.; Song, X. Z. Organo-Fluorine Industry 2007, 21(in Chinese). (张恒, 宋学章, 有机氟工业, 2007, (4), 21.)
(b) Brown, D. W.; Wall, L. A. J. Polym. Sci., Part A:Polym. Chem.1968, 6, 1367.
(c) Souzy, R.; Ameduri, B.; Boutevin, B. Prog. Polym. Sci. 2004, 29, 75.
(d) Gil, B.; Kasperski, J. Energies 2018, 11, 2136.
(e) Sha, M.; Xing, P.; Jiang, B. Chin. Chem. Lett. 2015, 26, 491.
(f) Gray, K. C.; Heider, P.; McGough, P.; Ondari, M.; Devaraj, J.; Yang, Q.; Frycek, G.; Graham, B.; Neuman, J.; Lorsbach, B. A.; Zhang, Y. Org. Process Res. Dev. 2019, 23, 2142.
[6] Iwao, O.; Koji, K.; Masami, O. J. Am. Chem. Soc. 1987, 109, 7714.
[7] (a) Ojima, I.; Yatabe, M.; Fuchikami, T. J. Org. Chem. 1982, 47, 2051.
(b) Yarmolchuk, V. S.; Shishkin, O. V.; Starova, V. S.; Zaporozhets, O. A.; Kravchuk, O.; Zozulya, S.; Komarov, I. V.; Mykhailiuk, P. K. Eur. J. Org. Chem. 2013, 2013, 3086.
[8] (a) Feiring, A. E. J. Org. Chem. 1980, 45, 1962.
(b) Mir, Q. C.; Debuhr, R.; Haug, C.; White, H. F.; Gard, G. L. J. Fluorine Chem. 1980, 16, 373.
(c) Zhao, B.; Lu, J.-Y.; Li, Y.; Tu, D.-H.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. RSC Adv. 2015, 5, 101412.
[9] (a) Ma, W.; Lopez, G.; Ameduri, B.; Takahara, A. Langmuir 2020, 36, 1754.
(b) Kostov, G. K.; Lopez, G.; Brandstadter, S. M.; Edwards, B. E.; Améduri, B. Org. Lett. 2014, 16, 3516.
(c) Bruno, A. Macromolecules 2010, 43, 10163.
(d) Kostov, G. K.; Améduri, B.; Brandstadter, S. Collect. Czech. Chem. Commun. 2008, 73, 1747.
[10] (a) Fuchikami, T.; Yatabe, M.; Ojima, I. Synthesis 1981, 365.
(b) Yang, J.; Zhao, H.-W.; He, J.; Zhang, C.-P. Catalysts 2018, 8, 23.
[11] (a) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2000, 122, 8559.
(b) Kraft, B. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124, 8681.
(c) Kühnel, M. F.; Lentz, D. Angew. Chem., Int. Ed. 2010, 49, 2933.
(d) Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.
[12] (a) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1978, 100, 3435.
(b) Lu, X. Rev. Heteroat. Chem. 1991, 4, 278.
(c) Tsuji, J. J. Organomet. Chem. 1986, 300, 281.
[13] Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C. M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
[14] Knochel, P.; Krasovskiy, A. Synthesis 2006, 0890.
[15] Manolikakes, G.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 205.
[16] Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29.
Outlines

/