Oxidative Halocyclization of N-Allylarylamides with KX/Oxone System: Green Synthesis of 5-Halomethyl-2-Oxazolines

  • Liu Xinming ,
  • Li Lu ,
  • Jin Licheng ,
  • Zhao Jincan ,
  • Hua Yuanzhao ,
  • Wang Mincan ,
  • Liu Lantao
Expand
  • a College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000;
    b College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002;
    c College of Chemistry, Zhengzhou University, Zhengzhou 450001

Received date: 2020-05-29

  Revised date: 2020-07-02

  Online published: 2020-07-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572126), the Program of Science and Technology Innovation Talents of Henan Province (No. 2018JQ0011), the Natural Science Foundation of Hebei Province (No. B2019201415), and the Fundamental Research Funds for the Midwest Universities Comprehensive Strength Promotion Project (No. 521000981026).

Abstract

With inexpensive potassium halide (KX) as halogen source, and oxone as oxidant, a series of allylamides underwent halocyclization reaction and generated 5-halomethyl-2-oxazolines in good to excellent isolated yields under mild conditions. The protocol showed attractive advanced features including low cost of halogen source, absence of organic byproduct, and resultant environmental-friendly nature. In addition, various useful derivatives could be expected by proper nucleophilic substitution reactions.

Cite this article

Liu Xinming , Li Lu , Jin Licheng , Zhao Jincan , Hua Yuanzhao , Wang Mincan , Liu Lantao . Oxidative Halocyclization of N-Allylarylamides with KX/Oxone System: Green Synthesis of 5-Halomethyl-2-Oxazolines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4298 -4304 . DOI: 10.6023/cjoc202005087

References

[1] Saravanan, P.; Corey, E. J. J. Org. Chem. 2003, 68, 2760.
[2] Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875.
[3] Yeston, J. Science 2008, 321, 17a.
[4] Nganga, J. K.; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Saucedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M. Inorg. Chem. 2017, 56, 3214.
[5] Jia, W. G.; Zhang, T.; Xie, D.; Xu, Q. T.; Ling, S.; Zhang, Q. Dalton Trans. 2016, 45, 14230.
[6] Deng, H. P.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2009, 351, 2897.
[7] Yeston, J. S. Science 2005, 310, 1249a.
[8] Sodeoka, M. Science 2011, 334, 1651.
[9] Yao, W.; Duan, Z. C.; Zhang, Y.; Sang, X.; Xia, X. F.; Wang, D. Adv. Synth. Catal. 2019, 361, 5695.
[10] Sang, X.; Hu, X.; Tao, R.; Zhang, Y.; Zhu, H.; Wang, D. ChemPlusChem 2020, 85, 123.
[11] Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. Chin. Chem. Lett. 2020, 31, 701.
[12] Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese). (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)
[13] Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676(in Chinese). (王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.)
[14] Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
[15] Yang, Q.; Zhang, Y.; Zeng, W.; Duan, Z.-C.; Sang, X.; Wang, D. Green Chem. 2019, 21, 5683.
[16] Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Ye, D.; Wang, D. Org. Chem. Front. 2019, 6, 3420.
[17] Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6, 62.
[18] Bellotti, P.; Brocus, J.; El Orf, F.; Selkti, M.; Koenig, B.; Belmont, P.; Brachet, E. J. Org. Chem. 2019, 84, 6278.
[19] Lamberth, C. J. Heterocycl. Chem. 2018, 55, 2035.
[20] Seebach, D. Helv. Chim. Acta 2019, 102, e1900072.
[21] Rajesh, N.; Manisha, B.; Ranjith, J.; Krishna, P. R. RSC Adv. 2016, 6, 6058.
[22] Kawamura, S.; Sekine, D.; Sodeoka, M. J. Fluorine Chem. 2017, 203, 115.
[23] Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 3335.
[24] Liu, G. Q.; Yang, C. H.; Li, Y. M. J. Org. Chem. 2015, 80, 11339.
[25] Zhou, W.; Xie, C.; Han, J.; Pan, Y. Org. Lett. 2012, 14, 4766.
[26] Senadi, G. C.; Guo, B. C.; Hu, W. P.; Wang, J. J. Chem. Commun. (Camb.) 2016, 52, 11410.
[27] Yang, C.-H.; Xu, Z.-Q.; Duan, L.; Li, Y.-M. Tetrahedron 2017, 73, 6747.
[28] Morino, Y.; Hidaka, I.; Oderaotoshi, Y.; Komatsu, M.; Minakata, S. Tetrahedron 2006, 62, 12247.
[29] Kawato, Y.; Kubota, A.; Ono, H.; Egami, H.; Hamashima, Y. Org. Lett. 2015, 17, 1244.
[30] Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. Angew. Chem. Int. Ed. 2011, 50, 2593.
[31] Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y. Chem. Commun. 2015, 51, 16675.
[32] Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020.
[33] Nagao, Y.; Hisanaga, T.; Egami, H.; Kawato, Y.; Hamashima, Y. Chem.-Eur. J. 2017, 23, 16758.
[34] Scheidt, F.; Thiehoff, C.; Yilmaz, G.; Meyer, S.; Daniliuc, C. G.; Kehr, G.; Gilmour, R. Beilstein J. Org. Chem. 2018, 14, 1021.
[35] Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[36] Hussain, H.; Green, I. R.; Ahmed, I. Chem. Rev. 2013, 113, 3329.
[37] Xu, J.; Tong, R. Green Chem. 2017, 19, 2952.
[38] Moriyama, K.; Sugiue, T.; Nishinohara, C.; Togo, H. J. Org. Chem. 2015, 80, 9132.
[39] Li, Y.; Ma, L. F.; Wang, X. J.; Lei, B. W.; Zhao, Y.; Yang, J. Y.; Li, Z. Y. Chin. J. Org. Chem. 2017, 37, 1213(in Chinese). (李瑶, 马丽芳, 王晓姣, 雷搏文, 赵怡, 杨嘉宇, 李子元, 有机化学, 2017, 37, 1213.)
[40] Tao, X. C.; Cao, X. J.; Yu, W.; Zhang, J. T. Chin. J. Org. Chem. 2010, 30, 250(in Chinese). (陶晓春, 曹雄杰, 余伟, 张钧陶, 有机化学, 2010, 30, 250.)
[41] Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.-L.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.
[42] Park, S.; Lee, H.; Lee, Y. Adv. Synth. Catal. 2019, 362, 572.
[43] Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
[44] Yue, H.; Bao, P.; Wang, L.; Lü, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463(in Chinese). (岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39, 463.)
[45] Nagaraju, K.; Rajesh, N.; Krishna, P. R. Synth. Commun. 2018, 48, 1001.
Outlines

/