Recent Progress of Protecting Groups for Terminal Alkynes

  • Hu Zhifang ,
  • Peng Lifen ,
  • Qiu Renhua ,
  • Orita Akihiro
Expand
  • a Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China;
    b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China;
    c Department of Chemistry, Okayama University of Science, Okayama 700-0005, Japan

Received date: 2020-05-31

  Revised date: 2020-07-02

  Online published: 2020-07-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21802040), the Natural Science Fund Youth Project of Hunan Province (No. 2018JJ3145) and the Open Foundation of Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology (No. E21843).

Abstract

The protection/deprotection of functional group is one of the fundamental technologies in organic synthesis. An ideal protecting group needs to satisfy the following issues:facile introduction, stability and facile deprotection. Protection of an acetylenic hydrogen is often necessary because of its acidity. In this review, the recent progress of protecting groups for terminal alkyne is highlighted. Based on different polarity of protecting groups, less polar protecting groups such as trimethylsilyl (TMS), trimethylgermanium group (Me3Ge) and high polar protecting groups like (3-cyanopropyl)dimethylsilyl (CPDMS), (3-cyanopropyl)diisopropylsilyl (CPDIPS) and diphenylphosphoryl (Ph2P(O)) are introduced in detail.

Cite this article

Hu Zhifang , Peng Lifen , Qiu Renhua , Orita Akihiro . Recent Progress of Protecting Groups for Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3112 -3119 . DOI: 10.6023/cjoc202005094

References

[1] Greene, T. W.; Wuts. P. G. M. Protective Groups in Organic Synthesis, 3th ed., John Wiley & Sons, Inc., New York, 1999.
[2] (a) Stang, P. J.; Diederich. F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
(b) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Willey-VCH Verlag GmbH & CO. KgaA, Weinheim, 2005.
(c) Peng, L.-F.; Zhang, S.-W.; Wang, B.-H.; Xun, M.-S.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 519(in Chinese). (彭丽芬, 张思维, 王丙昊, 寻梦硕, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 519.)
(d) Peng, L.-F.; Wang, B.-H.; Wang, M.; Tang, Z.-L.; Jiang, Y.-Z.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 235.
(e) Wang, Z.; Yang, L.; Liu, H.-L.; Bao, W.-H.; Tan, Y.-Z.; Wang, M.; Tang, Z.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 2639(in Chinese). (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
(f) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
(g) Li, W.-Y.; Yin, G.-X.; Huang, L.; Xiao, Y.; Fu, Z.-M.; Xin, X.; Liu, F.; Li, Z.-Z. He, W.-M. Green Chem. 2016, 18, 4879.
(h) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.;. He, W.-M.; Xu, X.-H. Org. Biomol. Chem. 2018, 16, 3177.
(i) Peng, L.-F.; Peng, C.; Wang, M.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 3048(in Chinese). (彭丽芬, 彭超, 汪明, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 3048.)
(j) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Wang, H.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2019, 43, 503.
[3] (a) Mao, G.; Orita, A.; Fenenko, L.; Yahiro, M.; Adachi, C.; Otera, J. Mater. Chem. Phys. 2009, 115, 378.
(b) Fenenko, L.; Shao, G.; Orita, A.; Yahiro, M.; Otera, J.; Svechnikov, S.; Adachi, C. Chem. Commun. 2007, 2278.
(c) Matsuo, D.; Yang, X.; Hamada, A.; Morimoto, K.; Kato, T.; Yahiro, M.; Adachi, C.; Orita, A.; Otera, J. Chem. Lett. 2010, 39, 1300.
(d) Oyamada, T.; Shao, G.; Uchiuzou, H.; Nakanotani, H.; Orita, A.; Otera, J.; Yahiro, M.; Adachi, C. Jpn. J. Appl. Phys., Part 2 2006, 45, 46.
(e) Yang, X.; Kajiyama, S.; Fang, J.-K.; Xu, F.; Uemura, Y.; Koumura, N.; Hara, K.; Orita, A.; Otera, J. Bull. Chem. Soc. Jpn. 2012, 85, 687.
(f) Yang, X.; Fang, J.-K.; Suzuma, Y.; Xu, F.; Orita, A.; Otera, J.; Kajiyama, S.; Koumura, N.; Hara, K. Chem. Lett. 2011, 40, 620.
(g) Peng, L.-F.; Hu, Z.-F.; Wang, H.; Wu, L.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. RSC. Adv. 2020, 10232.
(h) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
(i) Peng, L.-F.; Li, R.-Z.; Tang, Z.-L.; Chen, J.-Y.; Yi, R.-N.; Xu, X.-H. Tetrahedron 2017, 73, 3099.
(l) Peng, L.-F.; Jiang, J.; Peng, C.; Dai, N.-N.; Tang, Z.-L.; Jiao Y.-C.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2017, 37, 3013(in Chinese). (彭丽芬, 蒋娟, 彭超, 代宁宁, 唐子龙, 焦银春, 陈锦杨, 许新华, 有机化学, 2017, 37, 3013.)
(m) Peng, L.-F.; Hu, Z.-F.; Lu, Q.-C.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. Chin. Chem. Lett. 2019, 30, 2151.
(n) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. Curr. Org. Synth. 2020, 17, 271.
[4] (a) Rankin, G. M.; Maxwell-Cameron, I.; Painter, G. F.; Larsen, D. S. J. Org. Chem. 2013, 78, 5264.
(b) Urones, B.; Gómez Arrayás, R.; Carretero, J. C. Org. Lett. 2013, 15, 1120.
(c) Balbuena, P.; Gonçalves-Pereira, R.; Jiménez Blanco, J. L.; García-Moreno, M. I.; Lesur, D.; Ortiz Mellet, C.; García Fernández, J. M. J. Org. Chem. 2013, 78, 1390.
(d) Muranaka, K.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2011, 76, 9278.
(e) Ihara, H.; Koyanagi, M.; Suginome, M. Org. Lett. 2011, 13, 2662.
(f) Liang, H.; Corey, E. J. Org. Lett. 2011, 13, 4120.
[5] (a) Palmer, C. J.; Casida, J. E. Tetrahedron Lett. 1990, 31, 2857.
(b) Andreev, A. A.; Konshin, V. V.; Komarov, N. V.; Rubin, M.; Brouwer, C.; Gevorgyan, V. Org. Lett. 2004, 6, 421.
(c) Jiang, H.; Zhu, S. Tetrahedron Lett. 2005, 46, 517.
[6] Ernst, A.; Gobbi, L.; Vasella, A. Tetrahedron Lett. 1996, 37, 7959.
[7] Höger, S.; Bonrad, K. J. Org. Chem. 2000, 65, 2243.
[8] Gaefke, G.; Höger, S. Synthesis 2008, 2155.
[9] Yang, X.; Matsuo, D.; Suzuma, Y.; Fang, J.-K.; Xu, F.; Orita, A.; Otera, J. Synlett 2011, 2402.
[10] (a) Ito, H.; Arimoto, K.; Senusui, H.O.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977.
(b) Sugita, H.; Hatanaka, Y.; Hiyama, T. Chem. Lett. 1996, 25, 379.
[11] Davidsohn, W. E.; Henry, M. C. Chem. Rev. 1967, 67, 73.
[12] (a) Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 732.
(b) Nishikawa, T.; Ino, A.; Isobe, M.; Tetrahedron 1994, 50, 1449.
(c) Scott, L. T.; Cooney, M. J.; Johnels, D. J. Am. Chem. Soc. 1990, 112, 4054.
(d) Lu, Y.-F.; Fallis, A. G. Tetrahedron Lett. 1993, 34, 3367.
(e) Nielsen, M. B.; Diederich, F. Synlett 2002, 544.
(f) Tobe, Y.; Utsumi, N.; Kawabata, K.; Naemura, K. Tetrahedron Lett. 1996, 37, 9325.
[13] Nishikawa, T.; Ino, A.; Isobe, M. Tetrahedron 1994, 50, 1449.
[14] Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
[15] Li, H.-B.; Petersen, J. L.; Wang, K.-K. J. Org. Chem. 2001, 66, 7804.
[16] (a) Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. R. J. Am. Chem. Soc. 1997, 119, 2956.
(b) Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimbal, D. B.; Matzger, A.; Wan, W. B.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57, 3507.
[17] (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
(b) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
(c) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.
[18] Peng, L.-F.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. J. Org. Chem. 2013, 78, 12802.
[19] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1610.
[20] Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mandouh, W.; Sonoda, M.; Schryver, F. C. D.; Feyter, S. D.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613.
[21] (a) Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.
(b) Dogan, J.; Schulte, J. B.; Swiegers, G. F.; Wild, S. B. J. Org. Chem. 2000, 65, 951.
(c) Lu, E.; Chen, Y.; Zhou, J.; Leng, X. Organometallics 2012, 31, 4574.
[22] (a) Kosugi, M.; Fugami, K. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.:Negishi, E., Wiley, New York, 2002.
(b) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, U. K. 2004.
(c) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
[23] Warner, B. P.; Buchwald, S. L. J. Org. Chem. 1994, 59, 5822.
[24] (a) Mössinger, D.; Jester, S. S.; Sigmund, E.; Müller, U.; Höger, S. Macromolecules 2009, 42, 7974.
(b) Nicolaou, K. C.; Zipkin,R. E.; Petasis, N. A. J. Am. Chem. Soc. 1982, 104, 5558.
[25] Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.
[26] (a) Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Org. Chem. Front. 2015, 2, 248.
(b) Ikegashira, K.; Nishihara, Y.; Hirabayashi, K.; Mori, A.; Hiyama, T. Chem. Commun. 1997, 1039.
(c) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, T. Chem. Lett. 1997, 26, 1233.
(d) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.
Outlines

/