Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF3: Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles

  • Lang Bo ,
  • Suleman Muhammad ,
  • Lu Ping ,
  • Wang Yanguang
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou 310027

Received date: 2020-05-05

  Revised date: 2020-06-16

  Online published: 2020-08-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772169, 21632003).

Abstract

A facile and efficient method for the synthesis of novel 3-((trifluoromethyl)thio)-2-aminoindoles through copper (I)-promoted trifluoromethylthiolation of 3-diazoindolin-2-imines with AgSCF3 is reported. This methodology features a broad substrate scope of diazo compounds, economical copper(I) catalyst, readily available and stable diazo materials and trifluoromethylthiolating reagent, mild reaction conditions, short reaction time and water assisted higher yields.

Cite this article

Lang Bo , Suleman Muhammad , Lu Ping , Wang Yanguang . Copper(I)-Promoted Trifluoromethylthiolation of 3-Diazoindolin-2-imines with AgSCF3: Synthesis of 3-((Trifluoromethyl)thio)-2-aminoindoles[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3300 -3306 . DOI: 10.6023/cjoc202005011

References

[1] (a) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
(b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
(c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(d) Arnott, J. A.; Planey, S. L. Expert Opin. Drug Discovery 2012, 7, 863.
(e) Liu, X.; Testa, B.; Fahr, A. Pharm. Res. 2011, 28, 962.
[2] (a) Zheng, H.; Huang, Y.; Weng, Z. Tetrahedron Lett. 2016, 57, 1397.
(b) Yagupolskii, L. M.; Maletina, I. I.; Petko, K. I.; Fedyuk, D. V.; Handrock, R.; Shavaran, S. S.; Klebanov, B. M.; Herzig, S. J. Fluorine Chem. 2001, 109, 87.
[3] For selected reviews on trifluoromethylthiolation, see: (a) Tlili, A.; Billard, T. Angew. Chem. Int. Ed. 2013, 52, 6818.
(b) Liu, H.; Jiang, X. Chem. Asian. J. 2013, 8, 2546.
(c) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
[4] For selected reviews on the introduction of SCF3 group, see: (a) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
(b) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(c) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
(d) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
(e) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
(f) Li, S. S.; Wang, J. B. Acta Chim. Sinica 2018, 76, 913(in Chinese). (李树森, 王剑波, 化学学报, 2018, 76, 913.)
[5] (a) Man, E. H.; Coffman, D. D.; Muetterties E. L. J. Am. Chem. Soc. 1959, 81, 3575.
(b) Munavalli, S.; Wagner, G. W.; Hashemi, A. B.; Rohrbaugh, D. K.; Durst, H. D. Synth. Commun. 1997, 27, 2847.
(c) Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101.
(d) Chen, H.-T.; Huang, Y.; Qing, F. L.; Xu, X. H. Tetrahedron Lett. 2020, 61, 151628.
(e) Liu, Y. L.; Qing, F. L.; Xu, X. H. Eur. J. Org. Chem. 2020, 1015.
[6] (a) Wang, Q.; Qi, Z.; Xie, F.; Li, X. Adv. Synth. Catal. 2015, 357, 355.
(b) Baert, F.; Colomb, J.; Billard, T. Angew. Chem. Int. Ed. 2012, 51, 10382.
(c) Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457.
(d) Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856.
(e) Zhu, X. Li; Xu, J. H.; Cheng, D. J.; Zhao, L. J.; Liu, X. Y.; Tan, B. Org. Lett. 2014, 16, 2192.
(f) Franco, F.; Meninno, S.; Bengalia, M.; Lattanzi, A. Chem. Commun. 2020, 56, 3073.
[7] For selected examples, see: (a) Harris, J. F. J. Org. Chem. 1966, 31, 931.
(b) Zhu, M.; Li, R.; You, Q.; Fu, W.; Guo, W. Asian J. Org, Chem. 2019, 8, 2002.
(c) Hu, J. J.; Huang, Y. G.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2019, 39, 177(in Chinese). (解晓娟, 张忠, 赵华欣, 万文, 郝健, 有机化学, 2019, 39, 177.)
(d) Chen, D.; Ji, M. S.; Yao, Y. M.; Zhu, C. Acta Chim. Sinica 2018, 76, 951(in Chinese). (陈栋, 吉梅山, 姚英明, 朱晨, 化学学报, 2018, 76, 951.)
(e) Xiao, Z.; Liu, Y.; Zheng, L.; Liu, C.; Guo, Y.; Chen, Q. Y. J. Org. Chem. 2018, 83, 5836.
(f) Pan, S.; Huang, Y.; Xu, X. H.; Qing, F. L. Org. Lett. 2017, 19, 4624.
(g) Xiao, Z.; Liu, Y.; Zheng, L.; Zhou, X.; Xie, Y.; Liu, C.; Guo, Y.; Chen, Q. Y. Tetrahedron 2018, 74, 6213.
(h) Wu, Hao.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J. C.; Liu, C.; Chen, Q. Y. Angew. Chem. Int. Ed. 2015, 54, 4070.
(i) Dagousset, G.; Simon, C.; Anselmi, E.; Tuccio, B.; Billard, T.; Magnier, E. Chem.-Eur. J. 2017, 23, 4282.
(j) Pan, S.; Li, H.; Huang. Y.; Xu, X. H.; Qing, F. L. Org. Lett. 2017, 19, 3247.
(k) Li, H.; Liu, S.; Huang, Y.; Xu, X. H.; Qing, F. L. Chem. Commun. 2017, 53, 10136.
[8] (a) Pooput, C.; Medebielle, M.; Dolbier, W. R. Org. Lett. 2004, 6, 301.
(b) Pooput, C.; Dolbier, W. R.; Médebielle, M. J. Org. Chem. 2006, 71, 3564.
(c) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem. Int. Ed. 2007, 46, 754.
[9] (a) Scherer, O. Angew. Chem. 1939, 52, 457.
(b) Saint-Jalmes, L. J. Fluorine Chem. 2006, 127, 85.
[10] For selected reviews on direct trifluoromethylthiolations, see: (a) Zhang, K.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2015, 35, 556(in Chinese). (张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
(b) Zhang, P. P.; Lu, L.; Shen, Q. L. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
[11] For selected examples, see: (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
(b) Zhang, M.; Weng, Z. Org. Lett. 2019, 21, 5838.
(c) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312.
(d) Zhang, C.-P.; Vicic, D. J. Am. Chem. Soc. 2012, 134, 183.
(e) Chen, C.; Xie, Y.; Chu, L.; Wang, R.-W.; Zhang, X.; Qing, F.-L. Angew. Chem. Int. Ed. 2012, 51, 2492.
(f) Zhang, C.-P.; Vicic, D. Chem. Asian J. 2012, 7, 1756.
(g) Chen, C.; Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 12454.
(h) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
(i) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem. Int. Ed. 2013, 52, 1548.
(j) Li, S.-G.; Zard, S. Org. Lett. 2013, 15, 5898.
(k) Wang, X.; Yang, T.; Cheng, X.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 12860.
(l) Vinogradova, E. V.; Müller, P.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 3125.
[12] (a) Adams, D. J.; Goddard, A.; Clark, J. H.; Macquarrie, D. J. Chem. Commun. 2000, 987.
(b) Danoun, G.; Bayarmagnai, B.; Grünberg, M.; Gooßen, L. J. Chem. Sci. 2014, 5, 1312.
(c) Bertoli, G.; Exner, B.; Evers, M. V.; Tschuilk, K.; Gooben, L. J. J. Fluorine Chem. 2018, 210, 132.
(d) Zheng, C.; Liu, Y.; Hong, J.; Huag, S.; Zhang, W.; Yang, Y.; Fang, G.; Tetrahedron Lett. 2019, 60, 1404.
[13] Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372.
[14] Modak, A.; Pinter, E. N.; Cook, S. P. J. Am. Chem. Soc. 2019, 141, 18405.
[15] (a) Sahani, R. L.; Ye, L. W.; Liu, R. S. Adv. Organomet. Chem. 2020, 73, 195.
(b) Xia, Y.; Qiu, D.; Wang, J. B. Chem. Rev. 2017, 117, 13810.
(c) Li, L.; Tan, T. D.; Zhang, Y. Q.; Liu, X.; Ye, L. W. Org. Biomol. Chem. 2017, 15, 8483.
(d) Davies, P. W.; Garzón, M. Asian J. Org. Chem. 2015, 4, 694.
(e) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.
(f) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem. Int. Ed. 2012, 51, 862.
[16] For a recent review, see: Khanal, H. D.; Thombal, R. S.; Maezono, S. M. B.; Lee, Y. R. Adv. Synth. Catal. 2018, 360, 3185.
[17] (a) Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J. Chem.-Eur. J. 2016, 22, 12270.
(b) Lefebvre, Q.; Fava, E.; Niko-laienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617.
(c) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 2014, 3093.
(d) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J. Org. Lett. 2014, 16, 2030.
[18] (a) Lubcke, M.; Yunan, W.; Szabo, K. J. Org. Lett. 2017, 19, 4548.
(b) Mai, B. K.; Szabo, K. J.; Himo, F. Org. Lett. 2018, 20, 6646.
[19] Lübcke, M.; Bezhan, D.; Szabó, K. J. Chem. Sci. 2019, 10, 5990.
[20] (a) Xing, Y. P.; Sheng, G. R.; Wang, J.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 1244.
(b) Sheng, G. R.; Huang, K.; Chi, Z. H.; Ding, H. L.; Xing, Y. P.; Lu, P.; Wang, Y. G. Org. Lett. 2014, 16, 5096.
[21] For selected examples, see: (a) Ma, F. H.; Qian, J.; Lu, P.; Wang, Y. G. Org. Biomol. Chem. 2018, 16, 439.
(b) Wu, L.; Li, Z. M.; Lu, P.; Wang, Y. G. J. Org. Chem. 2018, 83, 13956.
(c) Suleman, M.; Li, Z. M.; Lu, P.; Wang, Y. G. Eur. J. Org. chem. 2019, 27, 4447.
(d) Sheng, G. R.; Ma, S. C.; Bai, S. L.; Mao, J. M.; Lu, P.; Wang, Y. G. Chem. Commun. 2018, 54, 1529.
(e) Ding, H. L.; Bai, S. L.; Lu, P.; Wang, Y. G. Org. Lett. 2017, 19, 4604.
(f) Zhou, Y. X.; Li, Z. M.; Ma, F. H.; Zhao, C.; Lu, P.; Wang, Y. G. J. Org. Chem. 2019, 84, 6655.
(g) Lang, B.; Zhu, H.; Wang, C.; Lu, P.; Wang, Y. G. Org. Lett. 2017, 19, 1630.
(h) Sheng, G. R.; Li, Z. M.; Mao, J. M.; Lu, P.; Wang, Y. G. J. Org. Chem. 2019, 84, 9561.
(i) Sheng, G. R.; Huang, K.; Ma, S. C.; Qian, J.; Lu, P.; Wang, Y. G. Chem. Commun. 2015, 51, 11056.
[22] CCDC 1997845(3p) contains supplementary crystallographic data for this paper.
Outlines

/