ACCOUNT

Nonplanar Nanographenes Based on Tribenzotriquinacene or Fenestrindane Core

  • Ng Chun-Fai ,
  • Wong Wai-Shing ,
  • Ip Ho-Wang ,
  • Lau Wing-Wa ,
  • Sun Xiao-Qing ,
  • Tse Ho-Wing ,
  • He Lisi ,
  • Cheung Enoch ,
  • Kuck Dietmar ,
  • Chow Hak-Fun
Expand
  • a Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China;
    b Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany

Received date: 2020-05-29

  Revised date: 2020-07-20

  Online published: 2020-08-01

Supported by

Project supported by the Research Grants Council of Hong Kong Special Administration Region (No. 14303816).

Abstract

Our recent research efforts on the synthesis of nonplanar nanographenes bearing tribenzotriquinacene or fenestrindane skeleton are summarized. Wizard hat-shaped or saddle-shaped nanographenes could be prepared using a non-classical Scholl-type cycloheptatriene formation or 19-membered ring macrocyclization. The key to the success of these transformation relies on the proper installation of the electron rich aryl functional groups in the bay areas of these molecular motifs. The three-dimensional structures of some of the nanographenes were determined by X-ray crystallography. Furthermore, these carbon-rich π-conjugated molecules are also showed to have interesting photophysical, self-assoication and host-guest complexation properties.

Cite this article

Ng Chun-Fai , Wong Wai-Shing , Ip Ho-Wang , Lau Wing-Wa , Sun Xiao-Qing , Tse Ho-Wing , He Lisi , Cheung Enoch , Kuck Dietmar , Chow Hak-Fun . Nonplanar Nanographenes Based on Tribenzotriquinacene or Fenestrindane Core[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3017 -3025 . DOI: 10.6023/cjoc202005083

References

[1] Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.
[2] Segawa, Y.; Ito, H.; Itami, K. Nat. Rev. Mater. 2016, 1, 15002.
[3] Márquez, I. R.; Castro-Fernández, S.; Millána, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.
[4] Higashibayashi, S.; Sakurai, H. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 61.
[5] Cheung, K. Y.; Miao, Q. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 85.
[6] Deng, C.-L.; Peng, X.-S.; Wong, H. N. C. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 111.
[7] Yamago, S.; Kayahara, E.; Hashimoto, S. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.:Miao, Q., Wiley-VCH, Weinheim, 2016, p. 143.
[8] Collins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J. Angew. Chem., Int. Ed. 2006, 45, 2923.
[9] Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.
[10] Kashihara, H.; Asada, T.; Kamikawa, K. Chem.-Eur. J. 2015, 21, 6523.
[11] Tellenbröker, J.; Kuck. D. Angew. Chem., Int. Ed. 1999, 38, 919.
[12] Tellenbröker, J.; Kuck. D. Eur. J. Org. Chem. 2001, 1483.
[13] Kuck, D. Chem. Rev. 2006, 106, 4885.
[14] Kuck, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 508.
[15] Kuck, D.; Lindenthal, T.; Schuster, A. Chem. Ber. 1992, 125, 1449.
[16] Kuck, D.; Schuster, A.; Krause, R. A.; Tellenbröker, J.; Exner, C. P.; Penk, M.; Bögge, H.; Müller, A. Tetrahedron 2001, 57, 3587.
[17] Kuck, D. Pure Appl. Chem. 2006, 78, 749.
[18] Brandenburg, J. G.; Grimme, S.; Jones, P. G.; Markopoulos, G.; Hopf, H.; Cyranski, M. K.; Kuck, D. Chem.-Eur. J. 2013, 19, 9930.
[19] Xu, W.-R.; Xia, G.-J.; Chow, H.-F.; Cao, X.-P.; Kuck, D. Chem.- Eur. J. 2015, 21, 12011.
[20] Strübe, J.; Neumann, B.; Stammler, H.-G.; Kuck, D. Chem.-Eur. J. 2009, 15, 2256.
[21] Klotzbach, S.; Scherpf, T.; Beuerle, F. Chem. Commun. 2014, 50, 12454.
[22] Klotzbach, S.; Beuerle, F. Angew. Chem., Int. Ed. 2015, 54, 10356.
[23] Beaudoin, D.; Rominger, F.; Mastalerz, M. Angew. Chem., Int. Ed. 2016, 55, 15599.
[24] Kirchwehm, Y.; Damme, A.; Kupfer, T.; Braunschweig, H.; Krueger, A. Chem. Commun. 2012, 48, 1502.
[25] Linke, J.; Bader, N.; Tellenbröker, J.; Kuck, D. Synthesis 2018, 50, 175.
[26] Kuck, D.; Linke, J.; Teichmann, L. C.; Barth, D.; Tellenbröker, J.; Gestmann, D.; Neumann, B.; Stammler, H.-G.; Bögge, H. Phys. Chem. Chem. Phys. 2016, 18, 11722.
[27] Mughal, E. U.; Kuck, D. Chem. Commun. 2012, 48, 8880.
[28] Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734.
[29] Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2013, 52, 9900.
[30] Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2020, 59, 2998.
[31] Mughal, E. U.; Neumann, B.; Stammler, H.-G.; Kuck, D. Eur. J. Org. Chem. 2014, 2014, 7469.
[32] Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem. 2006, 71, 5067.
[33] King, B. T.; Kroulík, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279.
[34] Ip, H.-W.; Ng, C.-F.; Chow, H.-F.; Kuck, D. J. Am. Chem. Soc. 2016, 138, 13778.
[35] Ip, H.-W.; Chow, H.-F.; Kuck, D. Org. Chem. Front. 2017, 4, 817.
[36] CCDC-1474467 contains the crystallographic data for 10.
[37] Fujioka, Y. Bull. Chem. Soc. Jpn. 1984, 57, 3494.
[38] Bieri, M.; Treier, M.; Cai, J.; Aїt-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X.; Müllen, K.; Fasel, R. Chem. Commun. 2009, 6919.
[39] Liu, Y.; Narita, A.; Teyssandier, J.; Wagner, M.; De Feyter, S.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 15539.
[40] Idelson, A.; Sterzenbach, C.; Jester, S.-S.; Tschierske, C.; Baumeister, U.; Höger. S. J. Am. Chem. Soc. 2017, 139, 4429.
[41] Ikemoto, K.; Kobayashi, R.; Sato, S.; Isobe, H. Angew. Chem., Int. Ed. 2017, 56, 6511.
[42] He, L.; Ng, C.-F.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2018, 57, 13635.
[43] CCDC-1850232 contains the crystallographic data for 25.
[44] Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybińska, J.; Kim, D.; Stępień, M. Angew. Chem., Int. Ed. 2016, 55, 14072.
[45] Kuck, D.; Bögge, H. J. Am. Chem. Soc. 1986, 108, 8107.
[46] Kuck, D. Chem. Ber. 1994, 127, 409.
[47] Kuck, D. In Advances in Theoretically Interesting Molecules, Vol. 4, Ed.:Thummel, R. P., JAI Press, Greenwich, London, 1998, p. 81.
[48] Kuck, D.; Schuster, A.; Krause, R. A. J. Org. Chem. 1991, 56, 3472.
[49] An, P.; Chow, H.-F.; Kuck, D. Synlett 2016, 27, 1255.
[50] Wong, W.-S.; Ng, C.-F.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2017, 56, 12356.
[51] CCDC-1528883 contains the crystallographic data for 36.
[52] Wong, W.-S.; Lau, W.-W.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Chem.-Eur. J. 2020, 26, 4310.
[53] Smith, J. N.; Lucas, N. T. Chem. Commun. 2018, 54, 4716.
[54] Liu, X.; Weinert, Z. J.; Sharafi, M.; Liao, C.; Li, J.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.
[55] Wong, W.-S.; Tse, H.-W.; Cheung, E.; Kuck, D.; Chow, H.-F. J. Org. Chem. 2019, 84, 869.
Outlines

/