Chinese Journal of Organic Chemistry >
Research Progress in Mitochondrial Targeting Fluorescent Probes for Hydrogen Peroxide
Received date: 2020-06-12
Revised date: 2020-07-08
Online published: 2020-08-01
Supported by
the National Natural Science Foundation of China(21878023); the National Natural Science Foundation of China(U1608222); the Program for Distinguished Professor of Liaoning Province
Controlling the content of mitochondrial hydrogen peroxide can play a beneficial role in cell survival, growth, differentiation and maintenance. However, the abnormal production of mitochondrial hydrogen peroxide may destroy the structure of biological macromolecules and cells, and promote the occurrence of aging, mutation and even cancer. Therefore, there is an urgent need for means to effectively monitor changes in hydrogen peroxide levels in living cells, especially in mitochondria. To this end, a variety of fluorescent probes have been developed and designed to monitor changes in hydrogen peroxide levels in mitochondria. The recent progress in mitochondrial targeting fluorescent probes for hydrogen peroxide based on the structure of targeting groups is summarized, and triphenylphosphonium probes, pyridinium probes, quinolinium probes, indolium probes, and other cationic probes are introduced, including the structure, fluorescence behavior and biological imaging of these probes. These fluorescent probes will become powerful molecular tools in future disease diagnosis and pathological research.
Jiaojiao Li , Lifu Ban , Lijun Tang . Research Progress in Mitochondrial Targeting Fluorescent Probes for Hydrogen Peroxide[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 241 -249 . DOI: 10.6023/cjoc202006023
[1] | Finkel T. Curr. Opin. Cell Biol. 2003, 15, 247. |
[2] | Stone J.R.; Yang S. Antioxid. Redox Signaling 2006, 8, 243. |
[3] | Zhang S.; Feng T.-T.; Zhang L.; Zhang M.-N. Chin. J. Anal. Chem. 2019, 47, 1664. (in Chinese) |
[3] | ( 张帅, 冯涛涛, 张丽, 张美宁, 分析化学, 2019, 47, 1664.). |
[4] | Reth M. Nat. Immunol. 2002, 3, 1129. |
[5] | Dickinson B.C.; Chang C.J. Nat. Chem. Biol. 2011, 7, 504. |
[6] | Veal E.; Day A. Antioxid. Redox Signaling 2011, 15, 147. |
[7] | Levitan I.; Volkov S.; Subbaiah P.V. Antioxid. Redox Signaling 2010, 13, 39. |
[8] | Brieger K.; Schiavone S.; Miller F.J.; Krause K.H. Swiss Med. Wkly. 2012, 142, w13659. |
[9] | Zheng D.-J.; Yang Y.-S.; Zhu H.-L. TrAC, Trends Anal. Chem. 2019, 118, 625. |
[10] | Zhang Y.; Dai M.; Yuan Z. Anal. Methods 2018, 10, 4625. |
[11] | Tang L.; Xia J.; Zhong K.; Tang Y.; Gao X.; Li J. Dyes Pigm. 2020, 178, 108379. |
[12] | Wen Y.; Huo F.; Yin C. Chin. Chem. Lett. 2019, 30, 1834. |
[13] | Zhang J.-D.; Liu H.-Z.; Meng L. Chin. J. Org. Chem. 2019, 39, 3132. (in Chinese) |
[13] | ( 张继东, 刘鸿泽, 孟丽, 有机化学, 2019, 39, 3132.). |
[14] | Tang L.; Zhou L.; Yan X.; Zhong K.; Gao X.; Li J. J. Photochem. Photobiol. A, 2020, 387, 112160. |
[15] | Yuan L.; Lin W.; Zheng K.; He L.; Huang W. Chem. Soc. Rev. 2012, 42, 622. |
[16] | Chan J.; Dodani S.C.; Chang C.J. Nat. Chem. 2012, 4, 973. |
[17] | Chen X.; Pradhan T.; Wang F.; Kim J.S.; Yoon J. Chem. Rev. 2012, 112, 1910. |
[18] | Zhang S.-X.; Niu Q.-M.; Wu S.-Z.; Lv H.-J.; Xing G.-W. Chin. J. Org. Chem. 2019, 39, 940. (in Chinese) |
[18] | ( 张晟曦, 牛晴旻, 吴松泽, 吕海娟, 邢国文, 有机化学, 2019, 39, 940.). |
[19] | Chen K.; Han B.-C.; Ji S.-X.; Sun J.; Gao Z.-Z.; Hou X.-F. Acta Chim. Sinica 2019, 77, 365. (in Chinese) |
[19] | ( 陈凯, 韩百川, 嵇思鑫, 孙瑾, 高振忠, 侯贤锋, 化学学报, 2019, 77, 365.). |
[20] | Banh S.; Treberg J.R. FEBS Lett. 2013, 587, 1799. |
[21] | Murphy M.P. Biochem. J. 2009, 417, 1. |
[22] | Dickinson B.C.; Srkun D.; Chang C.J. Curr. Opin. Chem. Biol. 2010, 14, 50. |
[23] | Bao L.; Avshalumov M.V.; Patel J.C.; Lee C.R.; Miller E.W.; Chang C.J.; Rice M.E. J. Neurosci. 2009, 29, 9002. |
[24] | Yang Q.; Wang S.; Li D.; Yuan J.; Xu J.; Shao S. Anal. Chim. Acta 2020, 1103, 202. |
[25] | Zhang R.; Niu G.; Liu Z.; Chau J.H.C.; Su H.; Lee M.M.S.; Gu Y.; Kwok R.T.K.; Lam J.W.Y.; Tang B.Z. Biomaterials 2020, 242, 119924. |
[26] | Yang Z.-G.; Xiong J.; Zhang W.; Li W.; Pan W.-H.; Zhang J.-G.; Gu Z.-Y.; Huang M.-N.; Qu J.-L. Acta Chim. Sinica 2020, 78, 130. (in Chinese) |
[26] | ( 杨志刚, 熊佳, 张炜, 李文, 潘文慧, 张建国, 顾振宇, 黄美娜, 屈军乐, 化学学报, 2020, 78, 130.). |
[27] | Horobin R.; Rashiddoubell F.; Pediani J.; Milligan G. Biotech. Histochem. 2013, 88, 440. |
[28] | Modicanapolitano J.S.; Aprille J.R. Adv. Drug Delivery Rev. 2001, 49, 63. |
[29] | He L.; Liu X.; Zhang Y.; Yang L.; Fang Q.; Geng Y.; Chen W.; Song X. Sens. Actuators B, 2018, 276, 247. |
[30] | Murphy M.P.; Smith R.A.J. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629. |
[31] | Yousif L.F.; Stewart K.M.; Kelley S.O. ChemBioChem 2009, 10, 1939. |
[32] | Hardy M.; Chalier F.; Ouari O.; Finet J.P.; Rockenbauer A.; Kalyanaraman B.; Tordo P. Chem. Commun. 2007, 1083. |
[33] | Dickinson B.C.; Chang C.J. J. Am. Chem. Soc. 2008, 130, 9638. |
[34] | Masanta G.; Heo C.H.; Lim C.S.; Bae S.K.; Cho B.R.; Kim H.M. Chem. Commun. 2012, 48, 3518. |
[35] | Du F.; Min Y.; Zeng F.; Yu C.; Wu S. Small 2014, 10, 964. |
[36] | Xu K.; Qiang M.; Gao W.; Su R.; Li N.; Gao Y.; Xie Y.; Kong F.; Tang B. Chem. Sci. 2013, 4, 1079. |
[37] | Xiao Y.-F. M.S. Thesis, East China Normal University, Shanghai, 2016. (in Chinese) |
[37] | ( 肖瑜峰, 硕士论文, 华东师范大学, 上海,2016). |
[38] | Liu J.; Liang J.; Wu C.; Zhao Y. Anal. Chem. 2019, 91, 6902. |
[39] | Xu J.; Zhang Y.; Yu H.; Gao X.; Shao S. Anal. Chem. 2016, 88, 1455. |
[40] | Roopa; Kumar, N.; Bhalla, V.; Kumar, M. Chem. Commun. 2015, 51, 15614. |
[41] | Ren M.; Deng B.; Zhou K.; Kong X.; Wang J.; Lin W. Anal. Chem. 2016, 89, 552. |
[42] | Liu Y.; Niu J.; Nie J.; Meng F.; Lin W. New J. Chem. 2017, 41, 3320. |
[43] | Tang L.; Tian M.; Chen H.; Yan X.; Zhong K.; Bian Y. Dyes Pigm. 2018, 158, 482. |
[44] | Yang L.; Niu J.; Sun R.; Xu Y.; Ge J. Analyst 2018, 143, 1813. |
[45] | Li H.; Xin C.; Zhang G.; Han X.; Qin W.; Zhang C.; Yu C.; Jing S.; Li L.; Huang W. J. Mater. Chem. B 2019, 7, 4243. |
[46] | Wu Z.; Liu M.; Liu Z.; Tian Y. J. Am. Chem. Soc. 2020, 142, 7532. |
[47] | Li S.; Wang P.; Feng W.; Xiang Y.; Dou K.; Liu Z. Chem. Commun. 2020, 56, 1050. |
[48] | Xiao H.; Li P.; Hu X.; Shi X.; Zhang W.; Tang B. Chem. Sci. 2016, 7, 6153. |
[49] | Xie X.; Yang X.; Wu T.; Li Y.; Li M.; Tan Q.; Wang X.; Tang B. Anal. Chem. 2016, 88, 8019. |
[50] | Xu R.; Wang Y.; You H.; Zhang L.; Wang Y.; Chen L. Analyst 2019, 144, 2556. |
[51] | Xiao H.; Li P.; Zhang S.; Zhang W.; Zhang W.; Tang B. Chem. Commun. 2016, 52, 12741. |
[52] | Zhou L.; Ding H.; Zhao W.; Hu S. Spectrochim. Acta, Part A, 2019, 206, 529. |
[53] | Gu T.; Mo S.; Mu Y.; Huang X.; Hu L. Sens. Actuators B, 2020, 309, 127731. |
/
〈 |
|
〉 |