Article

Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed

  • Xiangyang Wang ,
  • Junqing Gao ,
  • Xuetao Xu ,
  • Ping Fang ,
  • Tiansheng Mei
Expand
  • a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020
    b Center for Excellence in Molecular Synthesis, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-05-09

  Revised date: 2020-07-28

  Online published: 2020-08-06

Supported by

the National Natural Science Foundation of China(21772222); the National Natural Science Foundation of China(21821002); the Department of Education of Guangdong Province(2017KSYS010); the Department of Education of Guangdong Province(2017KZDXM084); the Department of Education of Guangdong Province(2019KZDZX2003); the Department of Education of Guangdong Province(2019KZDXM035)

Abstract

Sulfone is a common structure in natural products and active molecules, and also an important intermediate in organic synthesis. Sulfonylation is one of the most basic and important reactions in organic synthesis. The direct sulfonylation of C(sp 2)—H bond has been successfully realized by copper catalysis using 5-chloro-8-aminoquinoline (AQ') as a bidentate guiding group and various substituted sodium arylsulfites as sulfonylation reagent. This reaction has high functional group tolerance and a wide scope of substrates, including substrates with double substituents or fused rings. AQ' bidentate guiding group can be removed easily, which provides a new method for the synthesis of sulfone compounds. The reaction could be scaled up to the gram scale with a good yield.

Cite this article

Xiangyang Wang , Junqing Gao , Xuetao Xu , Ping Fang , Tiansheng Mei . Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 384 -393 . DOI: 10.6023/cjoc202005021

References

[1]
Patai S.; Rappoport C.Z.; Stirling J.M. The Chemistry of Sulfones and Sulfoxides, Wiley, New York , 1988.
[2]
Lopez de Compadre, R.L.; Pearlstein, R.A.; Hopfinger, A.J.; Seyde, J.K. J. Med. Chem. 1987, 30, 900.
[3]
Iversen P.; Tyrrell C.J.; Kaisary A.V.; Anderson J.B.; Van Poppel, H.E.I. N.; Tammela, T.L.; Melezinek, I. J. Urol. 2000, 164, 1579.
[4]
Tanetani Y.; Kaku K.; Kawai K.; Fujioka T.; Shimizu T. Pestic. Biochem. Physiol. 2009, 95, 47.
[5]
Otzen T.; Wempe E.G.; Kunz B.; Bartels R.; Lehwark-Yvetot G.; Hansel W.; K. Schaper, J.; Seydel, J.K. J. Med. Chem. 2004, 47, 240.
[6]
Simpkins N.S. Sulphones in Organic Synthesis, Pergamon Press, Oxford , 1993.
[7]
Ramberg L.; B-cklund B. Ark. Kemi, Mineral Geol. 1940, 27, 1.
[8]
Julia M.; Paris J.-M. Tetrahedron Lett. 1973, 14, 4833.
[9]
For recent examples, see: (a) Yuan, Z.; Wang, H.-Y.; Mu, X. Chen, P.; Guo, Y.-L.; Liu, G.J. Am. Chem. Soc. 2015, 137, 2468.
[9]
(b) Tang X.; Huang L.; Xu Y.; Yang J.; Wu W.; Jiang H. Angew. Chem., Int. Ed. 2014, 53, 4205.
[9]
(c) Xi Y.; Dong B.; McClain E.J.; Wang Q.; Gregg T.L.; Akhmedov N.G.; Petersen J.L.; Shi X. Angew. Chem., Int. Ed. 2014, 53, 4657.
[9]
(d) Handa S.; Fennewald J.C.; Lipshutz B.H. Angew. Chem., Int. Ed. 201 4, 53, 3432.
[9]
(e) Lu Q.; Zhang J.; Zhao G.; Qi Y.; Wang H.; Lei A. J. Am. Chem. Soc. 2013, 135, 11481.
[9]
(f) Liu Q.; Zhang J.; Wei F.; Qi Y.; Wang H.; Liu Z.; Lei A. Angew. Chem., Int. Ed. 2013, 52, 7156.
[9]
(g) Yuan G.; Zheng J.; Gao X.; Li X.; Huang L.; Chen H.; Jiang H. Chem. Commun. 2012, 48, 7513.
[9]
(h) Wu X.-S.; Chen Y.; Li M.-B.; Zhou M.-G.; Tian S.-K. J. Am. Chem. Soc. 2012, 134, 14694.
[10]
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
[11]
Liu N.-W.; Liang S.; Manolikakes G. Synthesis 201 6, 48, 1939.
[11]
For selected reviews on transition-metal-catalyzed C—H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.Chem. Soc. Rev. 2009, 38, 3242.
[11]
(b) Chen X.; Engle K.M.; Wang D.-H.; Yu J.-Q. Angew Chem., Int. Ed. 2009, 48, 5094.
[11]
(c) Lyons T.W.; Sanford M.S. Chem. Rev. 2010, 110, 1147.
[11]
(d) Arockiam P.B.; Bruneau C.; Dixneuf P.H. Chem. Rev. 2012, 112, 5879.
[11]
(e) Ackermann L.C. Acc. Chem. Res. 2014, 47, 281.
[11]
(f) Pei P.; Zhang F.; Yi H.; Lei A. Acta Chim. Sinica 2017, 75, 15. (in Chinese)
[11]
( 裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.).
[11]
(g) Du J.-Y.; Xia C.-G.; Sun, W. Acta Chim. Sinica. 2018, 76, 329. (in Chinese)
[11]
( 杜俊毅, 夏春谷, 孙伟, 化学学报, 2018, 76, 329.).
[11]
(h) For selected reviews on Directing-Group see: Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
[11]
(i) Li D.-D.; He C.-L.; Cai H.-T.; Wang G.-W. Chin. J. Org. Chem. 2013, 33, 203. (in Chinese)
[11]
( 李丹丹, 何程林, 蔡海婷, 王官武, 有机化学, 2013, 33, 203.).
[11]
(j) Wang S.; Yan F.; Wang L.-S.; Zhu L. Chin. J. Org. Chem. 2018, 38, 291. (in Chinese)
[11]
( 汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.).
[11]
(k) Luo F. Chin. J. Org. Chem. 2019, 39, 3084. (in Chinese)
[11]
( 罗飞华, 有机化学, 2019, 39, 3084.).
[11]
For examples on Directing-Group, see:.
[11]
(e) Zhang Q.; Yin X.-S.; Zhao S.; Fang S.-L.; Shi B.-F. Chem. Commun. 2014, 50, 8353.
[11]
(l) Yang Q.-L.; Wang X.-Y.; Wang T.-L.; Yang X.; Liu D.; Tong X.; Wu X.-Y.; Mei T.-S. Org. Lett. 2019, 21, 2645.
[11]
(m) Yang Q.-L.; Wang X.-Y.; Weng X.-J.; Yang X.; Xu X.-T.; Tong X.; Fang P.; Wu X.-Y.; Mei T.-S. Acta Chim. Sinica 2019, 77, 866. (in Chinese)
[11]
( 杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.).
[12]
For selected reviews on metals-catalyzed formation of C-S, see: (a) Liang, S.; Shaaban, S.; Liu, N.-W.; Hofman, K. Adv. Organomet. Chem. 2018, 69, 135.
[12]
For examples on metal-catalyzed formation of C—S, see:.
[12]
(b) Chen X.; Hao X.-S.; Goodhue C.E.; Yu J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
[12]
(c) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong, J-F.; Song, M.-P.Adv. Synth. Catal. 2017, 359, 2241.
[12]
(d) Liu C.; Fang Y.; Wang S.-Y.; Ji S.-J. ACS Catal. 2019, 9, 8910.
[12]
(e) Wang X.; Yi X.; Xu H.; Dai H.-X. Org. Lett. 2019, 21, 5981.
[12]
(f) Chen J.; Chen S.; Xu X.; Tang Z.; Au C.-T.; Qiu R. J. Org. Chem. 2016, 81, 3246.
[12]
(g) Liu D.; Ma H.-X.; Fang P.; Mei T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
[12]
(h) Meng Y.; Wang M.; Jiang X. Angew. Chem., Int. Ed. 2020, 59, 134.
[13]
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
[14]
For selected reviews on copper-catalyzed/mediated C—H sulfonylation see: (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
[14]
(b) Campbell A.N.; Stahl S.S. Acc. Chem. Res. 2012, 45, 851.
[14]
(c) Zhang C.; Tang C.; Jiao N. Chem. Soc. Rev. 2012, 41, 3464.
[14]
(d) Wendlandt A.E.; Suess A.M.; Stahl S.S. Angew. Chem., Int. Ed. 2011, 50, 11062.
[14]
(e) Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
[14]
For examples on copper-catalyzed/mediated C( sp2 )—H sulfonylation, see:.
[14]
(g) Uemura T.; Imoto S.; Chatani N. Chem. Lett. 2006, 35, 842.
[14]
(h) Peng J.; Chen M.; Xie Z.; Luo S.; Zhu Q. Org. Chem. Front. 2014, 1, 777.
[14]
(i) Peng J.; Xie Z.; Chen M.; Wang J.; Zhu Q. Org. Lett. 20 14, 16, 4702.
[14]
(j) Hao X.-Q.; Chen L.-J.; Ren B.; Li L.-Y.; Yang X.-Y.; Gong J.-F.; Niu J.-L.; Song M.-P. Org. Lett. 2014, 16, 1104.
[14]
(k) Guo Y.; Liu Z.; Zhu M.; Li L.; Li J.; Zou D.; Wu Y.; Wu Y. Chin. J. Org. Chem. 2020, 40, 724. (in Chinese)
[14]
( 郭圆圆, 刘振伟, 朱明祥, 李琳琳, 李敬亚, 邹大鹏, 吴豫生, 吴养洁, 有机化学, 2020, 40, 724).
[14]
(l) Fan C.-L.; Zhang L.-B.; Liu J.; Hao X.-Q.; Niu J.-L.; Song M.-P. Org. Chem. Front. 2019, 6, 2215.
[14]
For selected reviews on other metals-catalyzed/mediated sulfonylation, see:.(m) Liu J.; Zheng L. Adv. Synth. Catal. 2019, 361, 1710.
[14]
(n) Shaaban S.; Liang S.; Liu N.-W.; Manolikakes G. Org. Biomol. Chem. 2017, 15, 1947.
[14]
For examples on other metals-catalyzed/mediated sulfonylation,see: (o) Karmakar U.; Samanta. R.J. Org. Chem. 2019, 84, 2850.
[14]
(p) Kramer P.; Krieg S.-C.; Kelm H. Org. Biomol. Chem. 2019, 17, 5538.
[15]
(a) Liang S.; Liu N.-W.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 159.
[15]
(b) Liu J.; Yu L.; Zhuang S.; Gui Q.; Chen X.; Wang W.; Tan Z. Chem. Commun. 2015, 51, 6418.
[15]
(c) Rao W.-H.; Shi B.-F. Org. Lett. 2015, 17, 2784.
[15]
(d) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong J.-F.; Song M.-P. Adv. Synth. Catal. 2017, 359, 2241.
[15]
(e) Rao W.-H.; Zhan B.-B.; Chen K.; Ling P.-X.; Zhang Z.-Z.; Shi B.-F. Org. Lett. 2015, 17, 3552.
[15]
(f) Wu Z.; Song H.; Cui X.; Pi C.; Du W.; Wu Y. Org. Lett. 2013, 15, 1270.
[15]
(g) Yokota A.; Chatani N. Chem. Lett. 2015, 44, 902.
[15]
(h) Reddy V.P.; Qiu R.; Iwasaki T.; Kambe N. Org. Biomol. Chem. 2015, 13, 6803.
[15]
(i) Xia H.; An Y.; Zeng X.; Wu J. Chem. Commun. 2017, 53, 12548.
[16]
(a) Liang H.-W.; Jiang K.; Ding W.; Yuan Y.; Shuai L.; Chen Y.-C.; Wei Y. Chem. Commun. 2015, 51, 16928.
[16]
(b) Qiao H.; Sun S.; Yang F.; Zhu Y.; Zhu W.; Dong Y.; Wu Y.; Kong X.; Jiang L.; Wu Y. Org. Lett. 2015, 17, 6086.
[16]
(c) Wei J.; Jiang J.; Xiao X.; Lin D.; Deng Y.; Ke Z.; Jiang H.; Zeng W. J. Org. Chem. 2016, 81, 946.
[16]
(d) Xu J.; Shen C.; Zhu X.; Zhang P.; Ajitha M.J.; Huang K.-W.; An Z.; Liu X. Chem. -Asian J. 2016, 11, 882.
[16]
(e) Li J.-M.; Weng J.; Lu G.; Chan A.S.C. Tetrahedron Lett. 2016, 57, 2121.
[16]
(f) Liang S.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 2371.
[16]
(g) Li J.-M.; Wang Y.-H.; Yu Y.; Wu R.-B.; Weng J.; Lu G.. ACS Catal. 2017, 7, 2661.
[16]
(h) Xia C.; Wang K.; Xu J.; Wei Z.; Shen C.; Duan G.; Zhu Q.; Zhang P. RSC Adv. 2016, 6, 37173.
[16]
(i) Liang S.; Bolte M.; Manolikakes G. Chem. -Eur. J. 2017, 23, 96.
[16]
(j) Bai P.; Sun S.; Li Z.; Qiao H.; Su X.; Yang F.; Wu Y.; Wu Y. J. Org. Chem. 2017, 82, 12119.
[16]
(k) Chen G.; Zhang X.; Zeng Z.; Peng W.; Liang Q.; Liu J. ChemistrySelect 2017, 2, 1979.
[16]
(l) Wang K.; Wang G.; Duan G.; Xia C. RSC Adv. 2017, 7, 51313.
[16]
(m) Xia H.; An Y.; Zeng X.; Wu J. Org. Chem. Front. 2018, 5, 366.
[17]
(a) Raziullah.; Kumar, M.; Kant, R.; Koley, D. Adv. Synth. Catal. 2019, 361, 1.
[17]
(b) Gandeepan P.; Koeller J.; Ackermann L. ACS Catal. 2017, 7, 1030.
[17]
(c) Ahmad A.; Dutta H.S.; Khan B.; Kant R.; Koley D. Adv. Synth. Catal. 2018, 360, 1644.
[17]
(d) Xu H.; Qiao X.; Yang S.; Shen Z. J. Org. Chem. 2014, 79, 4414.
[17]
(e) Guo X.X.; Gu D.W.; Wu Z.X.; Zhang W.B. Chem. Rev. 2015, 115, 1622.
[17]
(f) Huffman L.M.; Stahl S.S. J. Am. Chem. Soc. 2008, 130, 9196.
[17]
(g) King A.E.; Huffman L.M.; Casitas A.; Costas M.; Ribas X.; Stahl S.S. J. Am. Chem. Soc. 2010, 132, 12068.
[17]
(h) Yao B.; Wang Z.-L.; Zhang H.; Wang D.-X.; Zhao L.; Wang M.-X. J. Org. Chem. 2012, 77, 3336.
[17]
(i) Yao B.; Wang D.-X.; Huang Z.-T.; Wang M.-X. Chem. Commun. 2009, 2899.
[18]
Holmes C.W.N.; Loudon J.D. J. Chem. Soc. 1940, 1521.
Outlines

/