Synthesis of 10-Phenanthrenol Derivatives via Visible Light Catalyzed Itramolecular Cycloaromatization

  • Teng Qiaoling ,
  • Xu Lulu ,
  • Cheng Dongping ,
  • Xu Xiaoliang
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014;
    b College of Pharmaceutical, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-05-28

  Revised date: 2020-07-21

  Online published: 2020-08-06

Supported by

Project supported by the Zhejiang Provincial Natural Science Foundation (Nos. LY18B020018, LY15B020004) and the National Natural Science Foundation of China (No. 21602197).

Abstract

Phenanthrene derivatives play an important role in pharmaceutical chemistry and material science. Due to its advantages of green, mild reaction conditions and great application potential, visible light catalysis has become a powerful tool in organic synthesis. In this paper, under the catalysis of photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, a series of 10-phenanthrenol derivatives were synthesized from 2-arylbenzoyl acetate derivatives in moderate to good yields through intramolecular cycloaromatization. In addition, the plausible reaction mechanism was also proposed.

Cite this article

Teng Qiaoling , Xu Lulu , Cheng Dongping , Xu Xiaoliang . Synthesis of 10-Phenanthrenol Derivatives via Visible Light Catalyzed Itramolecular Cycloaromatization[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4258 -4266 . DOI: 10.6023/cjoc202005077

References

[1] (a) Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509.
(b) Kovács, A.; Vasas, A.; Hohmann, J. Phytochemistry 2008, 69, 1084.
(c) Narita, A.; Wang, X.; Feng, X.; Mullen, K. Chem. Soc. Rev. 2015, 44, 6616.
[2] (a) De Alvarenga, M. A.; Gottlieb, O. R.; Magalhaes, M. T. Phytochemistry 1976, 15, 844.
(b) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Schmidt, J. M. Can. J. Chem. 1988, 66, 406.
(c) Cragg, G. M.; Newman, D. J. J. Nat. Prod. 2004, 67, 232.
[3] (a) Huffman, C. W.; Traxler, J. T.; Krbechek, L. O.; Riter, R. R.; Wagner, R. G. J. Med. Chem. 1971, 14, 90.
(b) Colwell, W. T.; Brown, V.; Christie, P.; Lange, J.; Reece, C.; Yamamoto, K.; Henry, D. W. J. Med. Chem. 1972, 15, 771.
[4] Matsuda, H.; Morikawa, T.; Xie, H.; Yoshikawa, M. Planta Med. 2004, 70, 847.
[5] (a) Fisch, M. H.; Flick, B. H.; Arditti, J. Phytochemistry 1973, 12, 437.
(b) Yamaki, M.; Bai, L.; Inoue, K.; Takagi, S. Phytochemistry 1989, 28, 3503.
[6] (a) Mitsuhashi, R.; Suzuki, Y.; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; Maniwa, Y.; Kubozono, Y. Nature 2010, 464, 76.
(b) Lewis, F. D.; Burch, E. L. J. Phys. Chem. 1996, 100, 4055.
(c) Machado, A. M.; Munaro, M.; Martins, T. D.; Dávila, L. Y. A.; Giro, R.; Caldas, M. J.; Atvars, T. D. Z.; Akcelrud, L. C. Macromolecules 2006, 39, 3398.
(d) Matsuo, Y.; Sato, Y.; Hashiguchi, M.; Matsuo, K.; Nakamura, E. Adv. Funct. Mater. 2009, 19, 2224.
[7] (a) Yadav, A. K.; Ila, J.; Junjappa, H. Eur. J. Org. Chem. 2010, 2010, 338.
(b) Gupta, V.; Rao, V. U. B.; Das, T.; Vanka, K.; Singh, R. P. J. Org. Chem. 2016, 81, 5663.
(c) Gupta, V.; Pandey, S. K.; Singh, R. P. Org. Biomol. Chem. 2018, 16, 7134.
[8] (a) Bogert, M. T. Science 1933, 77, 289.
(b) Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509.
[9] (a) Almeida, J. F.; Castedo, L.; Fernández, D.; Neo, A. G.; Romero, V.; Tojo, G. Org. Lett. 2003, 5, 4939.
(b) Kang, Y.; Wang, T.; Liang, Y.; Zhang, Y.; Wang, R.; Zhang, Z. RSC Adv. 2017, 7, 44333.
(c) Kang, T.; Zhang, W.; Wang, T.; Liang, Y.; Zhang, Z. J. Org. Chem. 2019, 84, 12387.
(d) Neo, A. G.; López, C.; Romero, V.; Antelo, B.; Delamano, J.; Pérez, A.; Fernandez, D.; Almeida, J. E.; Castedo, L.; Tojo, G. J. Org. Chem. 2010, 75, 6764.
[10] (a) Mallory, F. B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc. 1964, 86, 3094.
(b) Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373.
(c) Matsushima, T.; Kobayashi, S.; Watanabe, S. J. Org. Chem. 2016, 81, 7799.
[11] Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R. Tetrahedron Lett. 2002, 43, 3185.
[12] Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 5714.
[13] (a) McMurry, J. E. Acc. Chem. Res. 1983, 16, 405.
(b) McMurry J. E. Chem. Rev. 1989, 89, 1513.
(c) Gies, A. E.; Pfeffer, M. J. Org. Chem. 1999, 64, 3650.
[14] (a) Iuliano, A.; Piccioli, P.; Fabbri, D. Org. Lett. 2004, 6, 3711.
(b) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664.
(c) McAtee, C. C.; Riehl, P. S.; Schindler, C. S. J. Am. Chem. Soc. 2017, 139, 2960.
[15] Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 6, 7536.
(b) Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 6557.
(c) Yan, J.; Yoshikai, N. Org. Lett. 2017, 19, 6630.
[16] Gou, B.; Yang, H.; Sun, H.; Chen, J.; Wu, J.; Zhou, L. Org. Lett. 2019, 21, 80.
(b) Yao, T.; Zhang, H.; Zhao, Y. Org. Lett. 2016, 18, 2532.
(c) Song, J.; Wang, S.; Sun, H.; Fan, Y.; Xiao, K.; Qian, Y. Org. Biomol. Chem. 2019, 17, 3328.
(d) Iwasaki, M.; Araki, Y.; Nishihara, Y. J. Org. Chem. 2017, 82, 6242.
[17] Liu, Y.; Chen, L.; Wang, Z.; Liu, P.; Liu, Y.; Dai, B. J. Org. Chem. 2019, 84, 204.
[18] (a) Liu, W.; Zhang, Y.; Guo, H. J. Org. Chem. 2018, 83, 10518.
(b) Yao, T.; Campo, M. A.; Larock, R. C. J. Org. Chem. 2005, 70, 3511.
[19] (a) Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828.
(b) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
(c) Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140.
(d) Uygur, M.; Danelzik, T.; Mancheño, O. G. Chem. Commun. 2019, 55, 2980.
(e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
(f) Chen, Y.; Lu, L.; Yu, D.; Zhu, C.; Xiao, W. Sci. China Chem. 2019, 62, 24.
(g) Goddard, J. P.; Ollivier, C.; Fensterbank, L. Acc. Chem. Res. 2016, 49, 1924.
(h) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(i) Zhang, H.; Lei, A. Asian J. Org. Chem. 2018, 7, 1164.
(j) Yu, X.; Zhao, Q.; Chen, J.; Xiao, W.; Chen, J. Acc. Chem Res. 2020, 53, 1066.
(k) Yang, X.; Guo, J.; Xiao, H.; Feng, K.; Chen, B.; Tung, C.; Wu, L. Angew. Chem. Int. Ed. 2020, 59, 5365.
(l) Zhang, Q.; Xiong, Q.; Li, M.; Xiong, W.; Shi, B.; Lan, Y.; Lu, L.; Xiao, W. Angew. Chem. Int. Ed. 2020, DOI:10.1002/anie. 202005313.
[20] Jiang, Y.; Yu, Z.; Zhang, Y.; Wang, B. Org. Lett. 2018, 20, 3728.
[21] (a) Dai, X.; Cheng, D.; Guan, B.; Mao, W.; Xu, X.; Li, X. J. Org. Chem. 2014, 79, 7212.
(b) Dai, X.; Mao, R.; Guan, B.; Xu, X.; Li, X. RSC Adv. 2015, 5, 55290.
(c) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564.
(d) Ye, Q.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2546.
(e) Ye, H.; Ye, Q.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2046.
(f) Ye, H.; Zhao, H.; Ren, S.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2019, 60, 1302.
[22] Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K. Angew. Chem. Int. Ed. 2017, 56, 8004.
[23] Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291.
[24] (a) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
(b) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem. Int. Ed. 2011, 50, 7304.
[25] Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.; Armstrong, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918.
[26] Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161.
[27] Jiang, J.; Wang, Y.; Zhang, X. ACS Catal. 2014, 4, 1570.
Outlines

/