Supramolecular Self-Assembly of Dioxyphenylene Bridged Ureidopyrimidinone Derivatives

  • Qi Lijie ,
  • Ding Yihan ,
  • Xiao Tangxin ,
  • Wu Haoran ,
  • Diao Kai ,
  • Bao Cheng ,
  • Shen Yong ,
  • Li Zhengyi ,
  • Sun Xiaoqiang ,
  • Wang Leyong
Expand
  • a School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164;
    b School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2020-06-29

  Revised date: 2020-07-27

  Online published: 2020-08-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21702020).

Abstract

Supramolecular polymers are regarded as a new kind of dynamic materials. The study of supramolecular polymers not only helps to understand the law of self-assembly, but also provides theoretical support for the development of smart materials. Herein, three dioxyphenylene bridged ditopic ureidopyrimidinone (UPy) derivatives M1~M3 are studied. These molecules could undergo supramolecular polymerization via quadruple hydrogen bonding. The only difference in their structure is the length of the oligo(ethylene oxide) chain as spacers. The supramolecular polymerization based on ring-chain equilibrium of these molecules were studied by a series of experiments including concentration-dependent 1H NMR, NOESY, and viscosity measurement, which showed that the spacer length has a big impact on the ring-opening supramolecular polymerization process. And the main reason for this is the different strengths of π-π interaction between the dioxyphenylene unit and the dimerized UPy motif in the cyclic monomer form. M1 with the shortest spacer lacks this kind of π-π interaction while M3 with the longest spacer possesses a weak π-π interaction, both leading to small value of CPCs. By contrast, M2 with a moderate length of spacer has a strong π-π interaction, resulting in a high CPC value (189 mmol·L-1). Finally, the host-guest complexation between M1~M3 with the π-electron deficient bipyridinium-based cyclophane “blue-box” were further investigated, which shows that only M3 could perform host-guest complexation. From this interesting model, new insight into the relationship between molecular structure and supramolecular polymerization is discovered, which is important for creating tailor-made supramolecular polymeric materials.

Cite this article

Qi Lijie , Ding Yihan , Xiao Tangxin , Wu Haoran , Diao Kai , Bao Cheng , Shen Yong , Li Zhengyi , Sun Xiaoqiang , Wang Leyong . Supramolecular Self-Assembly of Dioxyphenylene Bridged Ureidopyrimidinone Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3847 -3852 . DOI: 10.6023/cjoc202006070

References

[1] Wehner, M.; Würthner, F. Nat. Rev. Chem. 2020, 4, 38.
[2] Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196..
[3] Huang, F.; Scherman, O. A. Chem. Soc. Rev. 2012, 41, 5879.
[4] Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
[5] Brunsveld, L.; Folmer, B. J.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071.
[6] Park, T.; Zimmerman, S. C. J. Am. Chem. Soc. 2006, 128, 11582.
[7] Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407, 167.
[8] He, M.; Chen, X.; Liu, D.; Wei, D. Chin. Chem. Lett. 2019, 30, 961.
[9] Würthner, F.; Saha-Möller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2016, 116, 962.
[10] Bentz, K. C.; Cohen, S. M. Angew. Chem., Int. Ed. 2018, 57, 14992.
[11] Li, Z.; Gu, J.; Qi, S.; Wu, D.; Gao, L.; Chen, Z.; Guo, J.; Li, X.; Wang, Y.; Yang, X.; Tu, Y. J. Am. Chem. Soc. 2017, 139, 14364.
[12] Wang, X.; Han, Y.; Liu, Y.; Zou, G.; Gao, Z.; Wang, F. Angew. Chem., Int. Ed. 2017, 56, 12466.
[13] Xu, Y.; Wang, W.; Chen, J.; Lin, S. Chin. J. Org. Chem. 2018, 38, 2161(in Chinese). (徐悦莹, 王伟, 陈健壮, 林绍梁, 有机化学, 2018, 38, 2161.)
[14] Xiao, T.; Zhou, L.; Xu, L.; Zhong, W.; Zhao, W.; Sun, X.-Q.; Elmes, R. B. P. Chin. Chem. Lett. 2019, 30, 271.
[15] Xiao, T.; Zhong, W.; Zhou, L.; Xu, L.; Sun, X.-Q.; Elmes, R. B. P.; Hu, X.-Y.; Wang, L. Chin. Chem. Lett. 2019, 30, 31.
[16] Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Chin. Chem. Lett. 2019, 30, 37
[17] Dong, S.; Zheng, B.; Wang, F.; Huang, F. Acc. Chem. Res. 2014, 47, 1982.
[18] Guo, D.-S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907.
[19] Huo, B.; Li, B.; Su, H.; Zeng, X.; Xu, K.; Cui, L. Chin. J. Org. Chem. 2019, 39, 1990(in Chinese). (霍博超, 李斌, 苏杭, 曾宪强, 徐凯迪, 崔雷, 有机化学, 2019, 39, 1990.)
[20] Wang, Y.; Ping, G.; Li, C. Chem. Commun. 2016, 52, 9858.
[21] Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J. R.; Wang, Y.; Zhang, D.; Yang, Y. W. J. Am. Chem. Soc. 2019, 141, 4756.
[22] Wang, Q.; Chen, Y.; Liu, Y. Polym. Chem. 2013, 4, 4192.
[23] Shi, Z. M.; Wu, C. F.; Zhou, T. Y.; Zhang, D. W.; Zhao, X.; Li, Z. T. Chem. Commun. 2013, 49, 2673.
[24] Wei, P.; Yan, X.; Huang, F. Chem. Soc. Rev. 2015, 44, 815.
[25] Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997, 278, 1601.
[26] Zhang, T.; Ma, X.; Tian, H. Chem. Sci. 2020, 11, 482.
[27] Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H. C.; Niu, S.; Yan, H.; Wang, S.; Lei, T.; Li, J.; Qi, D.; Huang, P.; Huang, J.; Zhang, Y.; Wang, Y.; Li, G.; Tok, J. B.; Chen, X.; Bao, Z. J. Am. Chem. Soc. 2018, 140, 5280.
[28] Qin, B.; Zhang, S.; Song, Q.; Huang, Z.; Xu, J. F.; Zhang, X. Angew. Chem., Int. Ed. 2017, 56, 7639.
[29] Peng, H.-Q.; Zheng, X.; Han, T.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, X.; Tang, B. Z. J. Am. Chem. Soc. 2017, 139, 10150.
[30] Goujon, A.; Mariani, G.; Lang, T.; Moulin, E.; Rawiso, M.; Buhler, E.; Giuseppone, N. J. Am. Chem. Soc. 2017, 139, 4923.
[31] Peng, H.-Q.; Sun, C.-L.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Adv. Funct. Mater. 2016, 26, 5483.
[32] Fu, X.; Gu, R.-R.; Zhang, Q.; Rao, S.-J.; Zheng, X.-L.; Qu, D.-H.; Tian, H. Polym. Chem. 2016, 7, 2166.
[33] Wang, Q.; Zhang, P.; Li, Y.; Tian, L.; Cheng, M.; Lu, F.; Lu, X.; Fan, Q.; Huang, W. RSC Adv. 2017, 7, 29364.
[34] Xiao, T.; Zhou, L.; Wei, X.; Li, Z.; Sun, X. Chin. J. Org. Chem. 2020, 40, 944(in Chinese). (肖唐鑫, 周玲, 魏小艳, 李正义, 孙小强, 有机化学, 2020, 40, 944.)
[35] Xiao, T.; Xu, L.; Wang, J.; Li, Z.-Y.; Sun, X.-Q.; Wang, L. Org. Chem. Front. 2019, 6, 936.
[36] Xiao, T.; Xu, L.; Götz, J.; Cheng, M.; Würthner, F.; Gu, J.; Feng, X.; Li, Z.-Y.; Sun, X.-Q.; Wang, L. Mater. Chem. Front. 2019, 3, 2738.
[37] Guo, D.; Sijbesma, R. P.; Zuilhof, H. Org. Lett. 2004, 6, 3667.
[38] Xiao, T.; Zhong, W.; Qi, L.; Gu, J.; Feng, X.; Yin, Y.; Li, Z.-Y.; Sun, X.-Q.; Cheng, M.; Wang, L. Polym. Chem. 2019, 10, 3342.
[39] Xiao, T.; Li, S.-L.; Zhang, Y.; Lin, C.; Hu, B.; Guan, X.; Yu, Y.; Jiang, J.; Wang, L. Chem. Sci. 2012, 3, 1417.
[40] de Greef, T. F. A.; Meijer, E. W. Nature 2008, 453, 171.
[41] Hu, X.-Y.; Zhang, P.; Wu, X.; Xia, W.; Xiao, T.; Jiang, J.; Lin, C.; Wang, L. Polym. Chem. 2012, 3, 3060.
[42] Li, S.-L.; Xiao, T.; Xia, W.; Ding, X.; Yu, Y.; Jiang, J.; Wang, L. Chem.-Eur. J. 2011, 17, 10716.
[43] Zhang, K.-D.; Zhao, X.; Wang, G.-T.; Liu, Y.; Zhang, Y.; Lu, H.-J.; Jiang, X.-K.; Li, Z.-T. Angew. Chem., Int. Ed. 2011, 50, 9866.
[44] Liu, M.; Li, S.; Zhang, M.; Zhou, Q.; Wang, F.; Hu, M.; Fronczek, F. R.; Li, N.; Huang, F. Org. Biomol. Chem. 2009, 7, 1288.
[45] Anelli, P. L.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Delgado, M.; Gandolfi, M. T.; Goodnow, T. T.; Kaifer, A. E.; Philp, D.; Pietraszkiewicz, M.; Prodi, L.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Vicent, C.; Williams, D. J. J. Am. Chem. Soc. 1992, 114, 193.
[46] Tsukamoto, T.; Sasahara, R.; Muranaka, A.; Miura, Y.; Suzuki, Y.; Kimura, M.; Miyagawa, S.; Kawasaki, T.; Ko-bayashi, N.; Uchiyama, M.; Tokunaga, Y. Org. Lett. 2018, 20, 4745.
[47] Keizer, H. M.; Sijbesma, R. P.; Meijer, E. W. Eur. J. Org. Chem. 2004, 2004, 2553.
Outlines

/