Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds

  • Wang Shuai ,
  • Yang Cheng ,
  • Sun Shuo ,
  • Sun Hanli ,
  • Wang Jianbo
Expand
  • Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Received date: 2020-06-30

  Revised date: 2020-07-19

  Online published: 2020-08-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 91956104).

Abstract

The introduction of methyl group into aromatic compounds is a valuable transformation. A large number of known methods use organohalides as the starting materials. However, those methods require pre-synthesized methyl metal reagents or toxic methyl electrophiles. Herein, a palladium-catalyzed reductive coupling reaction between aryl bromides and trimethylsilyl-diazomethane is developed, and the following desilicification process can afford the methylated products. This transformation has broad functional group tolerance and allows methylation of (hetero)aryl halides in moderate to good yields. Thus, it has the potential to be an attractive approach for methylation of organic. In addition, this reductive coupling can also serve as an efficient way for the introduction of silylmethyl group.

Cite this article

Wang Shuai , Yang Cheng , Sun Shuo , Sun Hanli , Wang Jianbo . Palladium-Catalyzed Reductive Coupling of Aromatic Bromides and Trimethylsilyldiazomethane: Its Application to Methylation of Aromatic Compounds[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3881 -3888 . DOI: 10.6023/cjoc202006075

References

[1] (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
(b) Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. Chem. Rev. 2011, 111, 5215.
[2] For an example, see:Angell, R.; Aston, N. M.; Bamborough, P.; Buckton, J. B.; Cockerill, S.; deBoeck, S. J.; Edwards, C. D.; Holmes, D. S.; Jones, K. L.; Laine, D. I.; Patel, S.; Smee, P. A.; Smith, K. J.; Somers, D. O.; Walker, A. L. Bioorg. Med. Chem. Lett. 2008, 18, 4428.
[3] (a) Schönherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256.
(b) Leung, C. S.; Leung, S. S. F.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem. 2012, 55, 4489.
[4] For selected recent examples, see:(a) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature 2020, 580, 621.
(b) Serpier, F.; Pan, F.; Ham, W. S.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2018, 57, 10697.
(c) Haydl, A. M.; Hartwig, J. F. Org. Lett. 2019, 21, 1337.
(d) Ye, W.; Yan, Z.; Wan, C.; Hou, H.; Wang, Z. Acta Chim. Sinica 2018, 76, 99(in Chinees). (叶文波, 晏子聪, 万常峰, 侯豪情, 汪志勇, 化学学报, 2018, 76, 99.)
[5] (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
(b) Ochiai, M.; Morita, K. Tetrahedron Lett. 1967, 8, 2349.
(c) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
(d) Sugimori, A.; Yamada, T.; Ishida, H.; Nose, M.; Terashima, K.; Oohata, N. Bull. Chem. Soc. Jpn. 1986, 59, 3905.
[6] For reviews of methylation methods, see:(a) Yan, G.; Borah, A. J.; Wang, L.; Yang, M. Adv. Synth. Catal. 2015, 357, 1333.
(b) Kim, J.; Cho, S. H. Synlett 2016, 27, 2525.
(c) Hu, L.; Liu, Y. A.; Liao, X. Synlett 2018, 29, 375.
[7] For selected examples, see:(a) Hu, L.; Liu, X.; Liao, X. Angew. Chem., Int. Ed. 2016, 55, 9743.
(b) Yang, C. T.; Zhang, Z. Q.; Liu, Y. C.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 3904.
(c) Agrawal, T.; Cook, S. P. Org. Lett. 2014, 16, 5080.
(d) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.
(e) Wang, J.; Zhao, J.; Gong, H. Chem. Commun. 2017, 53, 10180.
(f) Liang, Z.; Xue, W.; Lin, K.; Gong, H. Org. Lett. 2014, 16, 5620.
(g) Shi, W.-J.; Shi, Z.-J. Chin. J. Chem. 2018, 36, 183.
[8] Uemura, T.; Yamaguchi, M.; Chatani, N. Angew. Chem., Int. Ed. 2016, 55, 3162.
[9] He, Z.-T.; Li, H.; Jaudl, A. M.; Whiteker, G. T.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 17197.
[10] Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
[11] Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7683.
[12] (a) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(b) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
(c) Xia, Y.; Wang, J. J. Am. Chem. Soc. 2020, 142, 10592.
[13] For selected examples for reductive coupling reactions involving metal carbene species, see:(a) Xia, Y.; Hu, F.; Liu, Z.; Qu, P.; Ge, R.; Ma, C.; Zhang, Y.; Wang, Org. Lett. 2013, 15, 1784.
(b) Xia, Y.; Hu, F.; Xia, Y.; Liu, Z.; Ye, F.; Zhang, Y.; Wang, J. Synthesis 2017, 49, 1073.
[14] For the examples of using TMSCHN2 in cross-coupling reactions, see:(a) Kudirka, R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585.
(b) Xu, S.; Chen, R.; Fu, Z.; Zhou, Q.; Zhang, Y.; Wang, J. ACS Catal. 2017, 7, 1993.
[15] (a) Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 12912.
(b) Zhang, W.-X.; Ding, C.-H.; Luo, Z.-B.; Hou, X.-L.; Dai, L.-X. Tetrahedron Lett. 2006, 47, 8391.
(c) Baciocchi, E.; Rol, C.; Rosato, G. C.; Sebastiani, G. V. J. Chem. Soc., Chem. Commun. 1992, 59.
[16] (a) Cai, G.; Huang, Y.; Du, T.; Zhang, S.; Yao, B.; Li, X. Chem. Commun. 2016, 52, 5425.
(b) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.
[17] Mu, Q.-C.; Wang, X.-B.; Ye, F.; Sun, Y.-Li.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, Li.-W. Chem. Commun. 2018, 54, 12994.
[18] Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc. 2008, 130, 15982.
[19] Suzuki, H.; Murashima, T.; Kozai, I.; Mori, T. J. Chem. Soc., Perkin Trans. 11993, 1591.
[20] Molander, G. A.; Yun, C.-S.; Ribagorda, M.; Biolatto, B. J. Org. Chem. 2003, 68, 5534.
[21] Das, M.; O'Shea, D. F. Tetrahedron 2013, 69, 6448.
[22] Kalvet, I.; Sperger, T.; Scattolin, T.; Magnin, G.; Schoenebeck, F. Angew. Chem., Int. Ed. 2017, 56, 7078.
[23] Wu, Y.; Bouvet, S.; Izquierdo, S.; Shafir, A. Angew. Chem., Int. Ed. 2019, 58, 2617.
[24] Heijnen, D.; Hornillos, V.; Corbet, B. P.; Giannerini, M.; Feringa, B. L. Org. Lett. 2015, 17, 2262.
[25] Al-Masum, M.; Welch, R. L. Tetrahedron Lett. 2014, 55, 1726.
[26] Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.
[27] Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424.
[28] He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[29] Huckins, J. R.; Rychnovsky, S. D. J. Org. Chem. 2003, 68, 10135.
[30] Scala, A. D.; Garbacia, S.; Hélion, F.; Lannou, M.-I.; Namy, J.-L. Eur. J. Org. Chem. 2002, 2989.
[31] Wu, X.-F.; Neumann, H.; Beller, M. Tetrahedron Lett. 2012, 53, 582.
Outlines

/