Methods of Transition Metal-Catalyzed Asymmetric Oxidation

  • Yao Biao ,
  • Wu Jiahao ,
  • Wang Yu ,
  • Jiang Huanfeng
Expand
  • Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641

Received date: 2020-05-31

  Revised date: 2020-07-06

  Online published: 2020-08-11

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA06002900) and the Key Research and Development Program of Guangdong Province (No. 2020B010188001).

Abstract

Transition metal-catalyzed asymmetric oxidation, as one of important research targets of chiral synthesis, provides a direct, practical route for the synthesis of various chiral bioactive products and drugs, and has received much attention. The recent progress of the methods of transition metal-catalyzed asymmetric oxidation, especially, asymmetric oxidative functionalization of olefins, C-H bond asymmetric oxidation reaction, asymmetric BV oxidation and sulfide asymmetric oxidation is elaborated. Outlook of those issuesis is also discussed.

Cite this article

Yao Biao , Wu Jiahao , Wang Yu , Jiang Huanfeng . Methods of Transition Metal-Catalyzed Asymmetric Oxidation[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3044 -3064 . DOI: 10.6023/cjoc202005095

References

[1] (a) Saisaha, P.; de Boerb, J. W.; Browne, W. R. Chem. Soc. Rev. 2013, 42, 2059.
(b) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Rev. 2014, 114, 8199.
(c) Liu, C.; Wen, K.-G.; Zeng, X.-P.; Peng, Y.-Y. Adv. Synth. Catal. 2020, 362, 1015.
(f) Bryliakov, K. P. Chem. Rev. 2017, 117, 11406.
[2] Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
[3] (a) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801.
(b) Irie, R.; Noda, K.; Ito, Y.; Matusumoto, N.:Katsuki, T. Tetrahedron Lett. 1990, 31, 7345.
[4] Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
(b) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451.
[5] Ji, N.; Yuan, J.; Liu, M.; Lan, T.; He, W. Chem. Commun. 2016, 52, 7731.
[6] Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136, 1222.
[7] Bhadra, S.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137, 15612.
[8] (a) Chu, Y.; Liu, X.; Li, W.; Hu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 1996.
(b) Chu, Y.; Hao, X.; Lin, L.; Chen, W.; Li, W.; Tan, F.; Liu, X.; Feng, X. Adv. Synth. Catal. 2014, 356, 2214.
[9] Clarasό, C.; Vicens, L.; Polo, A.; Costas, M. Org. Lett. 2019, 21, 2430.
[10] Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296.
[11] Koya, S.; Nishioka, Y.; Mizoguchi, H.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. 2012, 51, 8243.
[12] Kobayashi, Y.; Obayashi, R.; Watanabe, Y.; Miyazaki, H.; Miyata, I.; Suzuki, Y.; Yoshida, Y.; Shioiri, T.; Matsugi, M. Eur. J. Org. Chem. 2019, 2019, 2401.
[13] Farokhi, A.; Berijani, K.; Hosseini-Monfared, H. Catal. Lett. 2018, 148, 2608.
[14] Jat, J. L.; De, S. R.; Kumar, G.; Adebesin, A. M.; Gandham, S. K.; Falck, J. R. Org. Lett. 2015, 17, 1058.
[15] Zhu, H.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 1766.
[16] Qi, X.; Chen, C.; Hou, C.; Fu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 7415.
[17] (a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett., 2004, 6, 1573.
(b) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M. J. Org. Chem. 2017, 82, 11311.
[18] Fu, S.; Yang, H.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 1018.
[19] Zhang, W.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 5336.
[20] Bai, Z.; Zheng, S.; Bai, Z.; Song, F.; Wang, H.; Peng, Q.; Chen, G.; He, G. ACS Catal. 2019, 9, 6502.
[21] (a) Huang, L.; Wang, Q.; Liu, X.; Jiang, H. Angew. Chem., Int. Ed. 2012, 51, 5696.
(b) Zhang, Z.; Wu, W.; Liao, J.; Li, J.; Jiang, H. Chem.-Eur. J. 2015, 21, 6708.
[22] (a) Wu, M.-S.; Fan, T.; Chen, S.-S.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2018, 20, 2485.
(b) Zhang, T.; Shen, H.-C.; Xu, J.-C.; Fan, T.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2019, 21, 2048.
(c) Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem., Int. Ed. 2017, 56, 6641.
[23] Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Org. Lett. 2019, 21, 5015.
[24] Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[25] Mikami, K.; Hatano, M.; Terada, M. Chem. Lett. 1999, 28, 55.
[26] Schiffner, J. A.; Machotta, A. B.; Oestreich, M. Synlett 2008, 15, 2271.
[27] Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 15668.
[28] Akiyama, K.; Wakabayashi, K.; Mikami, K. Adv. Synth. Catal. 2005, 347, 1569
[29] Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O'Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933.
[30] Chen, G.; Cao, J.; Wang, Q.; Zhu, J. Org. Lett. 2020, 22, 322.
[31] (a) Walker, S. E.; Lamb, C. J. C.; Beattie, N. A.; Nikodemiak, P.; Lee, A.-L. Chem. Commun. 2015, 51, 4089.
(b) Lamb, C. J. C.; Vilela, F.; Lee, A.-L. Org. Lett. 2019, 21, 8689.
[32] (a) Mei, T.; Patel, H.; Sigman, M. S. Nature 2014, 508, 340.
(b) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 11461.
[33] (a) Shi, B. F.; Zhang, Y. H.; Lam, J. K.; Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 460.
(b) Xiao, K.-J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856.
[34] (a) Pi, C.; Li, Y.; Cui, X. L.; Zhang, H.; Han, Y. B.; Wu, Y. J. Chem. Sci. 2013, 4, 2675.
(b) Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385.
[35] Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[36] McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830.
[37] (a) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130.
(b) He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626.
(c) Du, W.; Gu, Q.; Li, Y.; Lin, Z.; Yang, D. Org. Lett. 2017, 19, 316.
[38] Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 1995.
[39] Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 7587.
[40] Sen, A.; Takenaka, K.; Sasai, H. Org. Lett. 2018, 20, 6827.
[41] Allen, J. R.; Bahamonde, A.; Furukawa, Y.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8670.
[42] (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.
(c) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
(d) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Science 2017, 355, 499.
[43] (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(b) Butler, A.; Sandy, M. Nature 2009, 460, 848.
[44] Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196.
(b) Sun, W.; Sun, Q. Acc. Chem. Rev. 2019, 52, 2370.
[45] Shi, B. F.; Maugel, N.; Zhang, Y. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[46] Xiao, K.-J.; Chu, L.; Chen, G.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 7796.
[47] Cheng, X. F.; Li, Y.; Su, Y. M.; Yin, F.; Wang, J. Y.; Sheng, J.; Vora, H. U.; Wang, X. S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 1236.
[48] Du, Z. J.; Guan, J.; Wu, G. J.; Xu, P.; Gao, L. X.; Han, F. S. J. Am. Chem. Soc. 2015, 137, 632.
[49] Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116.
[50] He, Y.-P.; Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2020, 59, 2105.
[51] Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
[52] (a) Gao, D. W.; Shi, Y. C.; Gu, Q.; Zhao, Z. L.; You, S. L. J. Am. Chem. Soc. 2013, 135, 86.
(b) Shi, Y. C.; Yang, R. F.; Gao, D. W.; You, S. L. Beilstein J. Org. Chem. 2013, 9, 1891.
[53] Zhang, H.; Cui, X. L.; Yao, X. N.; Wang, H.; Zhang, J. Y.; Wu, Y. J. Org. Lett. 2012, 14, 3012.
[54] (a) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544.
(b) Cai, Z.-J.; Liu, C.-X.; Gu, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 2149.
[55] Wang, S.-G.; Liu, Y.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 18136.
[56] Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133, 19598.
[57] Xiao, K. J.; Lin, D. W.; Miura, M.; Zhu, R. Y.; Gong, W.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 8138.
[58] Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134.
[59] Yin, C.; Cao, W.; Lin, L.; Liu, X.; Feng, X. Adv. Synth. Catal. 2013, 355, 1924.
[60] Yang, F.; Zhao, J.; Tang, X.; Zhou, G.; Song, W.; Meng, Q. Org. Lett. 2017, 19, 448.
[61] Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 63.
[62] Yang, F.; Zhao, J.; Tang, X.; Wu, Y.; Yu, Z.; Meng, Q. Adv. Synth. Catal. 2019, 361, 1673.
[63] Banerjee, A.; Yamamoto, H. Org. Lett. 2017, 19, 4363.
[64] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
[65] Kharasch, M. S.; Sosnovsky, G. J. Am. Chem. Soc. 1958, 80, 756.
[66] Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
[67] Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425.
[68] Yang, C.; Zhang, C.; Gu, Q.-S.; Fang, J.-H.; Su, X.-L.; Ye, L.; Sun, Y.; Tian, Y.; Li, Z.-L.; Liu, X.-Y. Nat. Catal. 2020, 3, 539.
[69] Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615.
[70] (a) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448.
(b) Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. J. Am. Chem. Soc. 2018, 140, 10658.
(b) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
(c) Ma, R.; Young, J.; Promontorio, R.; Dannheim, F. M.; Pattillo, C. C.; White, M. C. J. Am. Chem. Soc. 2019, 141, 9468.
[71] Li, J.; Ren, Y.; Yue, C.; Fan, Y.; Qi, C.; Jiang, H. ACS Appl. Mater. Interfaces 2018, 10, 36047.
[72] Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516.
[73] Posevins, D.; Qiu, Y.; Bäckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 3210.
[74] Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Wu, W.; Liu, Y.; Lin, L.; Feng, X. Org. Lett. 2014, 16, 3938.
[75] Bolm, C.; Schlingloff, G.; Weickhardt, K. Angew. Chem., Int. Ed. 1994, 33, 1848.
[76] Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Tetrahedron Lett. 1996, 37, 7583.
[77] Bianchini, G.; Cavarzan, A.; Scarso, A.; Strukul, G. Green Chem. 2009, 11, 1517.
[78] Wu, W.; Cao, W.; Hu, L.; Su, Z.; Liu, X.; Feng, X. Chem. Sci. 2019, 10, 7003.
[79] Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang J. J. Am. Chem. Soc. 2018, 140, 3467.
[80] Barman, S.; Patil, S.; Levy, C. J. Chem. Lett. 2012, 41, 974.
[81] Zong, L.; Wang, C.; Putra Moeljadi, A. M.; Ye, X.; Ganguly, R.; Li, Y.; Hirao, H.; Tan, C.-H. Nat. Commun. 2016, 7, 13455.
[82] (a) Dai, W.; Li, G.; Wang, L.; Chen, B.; Shang, S.; Lv, Y.; Gao, S. RSC Adv. 2014, 4, 46545.
(b) Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890.
[83] (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155.
(c) Liang, Y.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
(d) Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc. Chem. Res. 2018, 51, 1092.
(e) Li, J.; Liao, J.; Ren, Y.; Liu, C.; Yue, C.; Lu, J.; Jiang, H. Angew. Chem., Int. Ed. 2019, 58, 17148.
Outlines

/