REVIEWS

Research Progress of O—H Insertion Reaction Based on Diazo Ester

  • Feiyu Wang ,
  • Zhipeng Zhang ,
  • Fei Huang
Expand
  • a School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023
    b School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816
    c School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006

Received date: 2020-06-10

  Revised date: 2020-07-24

  Online published: 2020-08-11

Supported by

the National Natural Science Foundation of China(21901124); the Natural Science Foundation of the Jiangsu Higher Education Institutions(19KJB150032)

Abstract

The research progress of O—H insertion reaction of diazo esters catalyzed by homogeneous transition metal, nonmetal and heterogeneous catalysts in the past 10 years is reviewed. The structures and catalytic systems of various catalysts and their applications in drug development and organic synthesis are described. The substrate diazo ester is easy to prepare, the catalyst is cheap and easy to obtain, and the carbenoid intermediate formed in the reaction process has high reactivity. Therefore, the O—H insertion reaction can occur under mild conditions with efficient construction of C—O bond in considerable yield and enantioselectivity, which is conducive to the development and synthesis of chiral drugs. Finally, transition-metal- catalyzed O—H insertion and green synthesis are prospected.

Cite this article

Feiyu Wang , Zhipeng Zhang , Fei Huang . Research Progress of O—H Insertion Reaction Based on Diazo Ester[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 144 -157 . DOI: 10.6023/cjoc202006014

References

[1]
Mix K.A.; Aronoff M.R.; Raines R.T. ACS Chem. Biol. 2016, 11, 3233.
[2]
Doyle M.P.; McKervey M.A. Chem. Commun. 1997, 983.
[3]
(a) Doscher M.S.; Wilcox P.E. J. Biol. Chem. 1961, 236, 1328.
[3]
(b) Riehm J.P.; Scheraga H.A. Biochemistry 1965, 4, 772.
[3]
(c) Bayley H.; Knowles J.R. Methods Enzymol. 1977, 46, 69.
[3]
(d) Chowdhry V.; Westheimer F.H. Rev. Biochem. 1979, 48, 293.
[4]
(a) Nozaki H.; Moriuti S.; Takaya H.; Noyori R. Tetrahedron Lett. 1966, 7, 5239.
[4]
(b) Wolff L. Justus Liebigs Ann. Chem. 1902, 325, 129.
[4]
(c) Kirmse W. Eur. J. Org. Chem. 2002, 2193.
[4]
(d) Guo X.; Hu W.H. Acc. Chem. Res. 2013, 46, 2427.
[4]
(e) Qi C.R.; Yan D.H.; Xiong W.F.; Jiang H.F. Chin. J. Chem. 2018, 36, 399.
[5]
(a) Dzik W.I.; Xu X.; Zhang X.P.; Reek J.N.H.; Bruin B. J. Am. Chem. Soc. 2010, 132, 10891.
[5]
(b) Knight A.M.; Kan S.B.J.; Lewis R.D.; Brandenberg O.F.; Chen K.; Arnold F.H. ACS Cent. Sci. 2018, 4, 372.
[6]
Tyman J.H.P. Synthetic and Natural Phenols, Elsevier, Amsterdam , 1996.
[7]
(a) Lei Z.; Chen W.G.; Zhang M.; Napoli J.L. Biochemistry 2003, 42, 4190.
[7]
(b) Gregoire F.M.; Zhang F.; Clarke H.J.; Gustafson T.A.; Sears D.D.; Favelyukis S.; Lenhard J.; Rentzeperis D.; Clemens L.E.; Mu Y.; Lavan B.E. Mol. Endocrinol. 2009, 23, 975.
[7]
(c) Brodsky E.S.; Klyuev N.A.; Smirnova O.B.; Dovgilievitz A.V.; Grandberg I.I. Int. J. Environ. Anal. Chem. 1994, 56, 11.
[8]
Zhu S.F.; Cai Y.; Mao H.X.; Xie J.H.; Zhou Q.L. Nat. Chem. 2010, 2, 546.
[9]
Mbuvi H.M.; Klobukowski E.R.; Roberts G.M.; Woo L.K. J. Porphyrins Phthalocyanines 2010, 14, 284.
[10]
Zhu S.F.; Chen W.Q.; Zhang Q.Q.; Mao H.X.; Zhou Q.L. Synlett 2011, 919.
[11]
Pereira A.; Champouret Y.; Marti?n C.; Alvarez E.; Etienne M.; Belderrai?n T.R.; Perez. P. J. Chem.-Eur. J. 2015, 21, 9769.
[12]
Xie X.L.; Zhu S.F.; Guo J.X.; Cai Y.; Zhou Q.L. Angew. Chem., Int. Ed. 2014, 53, 2978.
[13]
Devine P.N.; Heid R.M.; Tschaen D.M. Tetrahedron 1997, 53, 6739.
[14]
Gao X.; Wu B.; Huang W.X.; Chen M.W.; Zhou Y.G. Angew. Chem., Int. Ed. 2015, 54, 11956.
[15]
Shen H.Q.; Xie H.P.; Sun L.; Zhou Y.G. Organometallics 2019, 38, 3902.
[16]
Liu Y.; Luo Z.J.; Zhang J.Z.H.; Xia F. J. Phys. Chem. A 2016, 120, 6485.
[17]
(a) Gorin D.J.; Toste F.D. Nature 2007, 446, 395.
[17]
(b) Fu?rstner A.; Davies P.W. Angew. Chem., Int. Ed. 2007, 46, 3410.
[17]
(c) Jimenez-Nu?nez E.; Echavarren A.M. Chem. Rev. 2008, 8, 3326.
[17]
(d) Rudolph M.; Hashmi A.S.K. Chem. Soc. Rev. 2012, 41, 2448.
[17]
Hashmi A.S.K.; Toste F.D. Modern Gold Catalyzed Synthesis, Wiley-VCH, Weinheim, 2012.
[17]
(f) Dorel R.; Echavarren A. M. Chem. Rev. 2015, 115, 9028.
[18]
(a) Zhou Y.B.; Trewyn B.G.; Angelici R.J.; Woo L.K. J. Am. Chem. Soc. 2009, 131, 11734.
[18]
(b) Qian D.Y.; Zhang J.L. Chem. Soc. Rev. 2015, 44, 677.
[18]
(c) Wang Y.H.; Muratore M.E.; Echavarren A.M. Chem.-Eur. J. 2015, 21, 7332.
[18]
(d) Xie J.; Pan C.D.; Abdukadera A.; Zhu C.J. Chem. Soc. Rev. 2014, 43, 5245.
[18]
(e) Wei F.; Song C.L.; Ma Y.D.; Zhou L.; Tung C.H.; Xu Z.H. Sci. Bull. 2015, 60, 1479.
[18]
(f) Sugimoto K.; Matsuya Y. Tetrahedron Lett. 2017, 58, 4420.
[18]
(g) Kawada Y.; Ohmura S.; Kobayashi M.; Nojo W.; Kondo M.; Matsuda Y.; Zhou J.; Inuki S.; Oishi S.; Wang C.; Saito T.; Uchiyama M.; Suzuki T.; Ohno H. Chem. Sci. 2018, 9, 8416.
[18]
(h) Hashmi A.S.K.; Rudolph M. Chem. Soc. Rev. 2012, 41, 2448.
[18]
(i) Gorin D.J.; Sherry B.D.; Toste F.D. Chem. Rev. 2008, 108, 3351.
[18]
(j) Arcadi A. Chem. Rev. 2008, 108, 3266.
[18]
(k) JimØnez-NfflC?ez E.; Echavarren A.M. Chem. Rev. 2008, 108, 3326.
[18]
(l) Hashmi A.S.K. Chem. Rev. 2007, 107, 3180.
[18]
(m) Zhang L.M.; Sun J.W.; Kozmin S.A. Adv. Synth. Catal. 2006, 348, 2271.
[19]
Xi Y.M.; Su Y.J.; Yu Z.Y.; Dong B.L.; McClain E.J.; Lan Y.; Shi X.D. Angew. Chem., Int. Ed. 2014, 53, 9817.
[20]
Zeineddine A.; Rekhroukh F.; Carrizo E.D.S.; Ladeira S.M.; Miqueu K.; Amgoune A.; Bourissou D. Angew. Chem., Int. Ed. 2018, 57, 1306.
[21]
Harada S.; Tanikawa K.; Homma H.; Sakai C.; Ito T.; Nemoto T. Chem.-Eur. J. 2019, 25, 12058.
[22]
Austeri M.; Rix D.; Zeghida W.; Lacour J. Org. Lett. 2011, 13, 1394.
[23]
Mercier A.; Yeo W.C.; Chou J.; Chaudhuri P.D.; Bernardinelli G.; Kundig E.P. Chem. Commun. 2009, 5227.
[24]
San H.H.; Wang S.J.; Jiang M.; Tang X.Y. Org. Lett. 2018, 20, 4672.
[25]
(a) Shibuya M.; Okamoto M.; Fujita S.; Abe M.; Yamamoto Y. ACS Catal. 2018, 8, 4189.
[25]
(b) Yu Z.; Li Y.; Shi J.; Ma B.; Liu L.; Zhang J. Angew. Chem., Int. Ed. 201 6, 55, 14807.
[26]
Couch E.D.; Auvil T.J.; Mattson A.E. Chem.-Eur. J. 2014, 20, 8283.
[27]
(a) Hart H.; Lin L.T.W. Mol. Cryst. Liq. Cryst. 1986, 137, 277.
[27]
(b) Etter M.C.; Panunto T.W. J. Am. Chem. Soc. 1988, 110, 5896.
[27]
(c) Etter M.C.; Urbanczyk-Lipkowsa Z.; Zia-Ebrahimi M.; Panunto T.W. J. Am. Chem. Soc. 1990, 112, 8415.
[27]
(d) Etter M.C. Acc. Chem.Res. 1990, 23, 120.
[27]
(e) Etter M.C. J. Phys. Chem. 1991, 95, 4601.
[27]
(f) Bhattacharyya S.; Bhattacherjee A.; Shirhatti P.R.; Wategaonkar S. J. Phys. Chem. A 2013, 117, 8238.
[27]
(g) Howard D.L.; Kjaergaard H.G. Phys. Chem. Chem. Phys. 2008, 10, 4113.
[27]
(h) Wierzejewska M.; Sadyka M. J. Mol. Struct. 2006, 786, 33.
[27]
(i) Ueyama N.; Nishikawa N.; Yamada Y.; Okamura T.-A.; Nakamura A. J. Am. Chem. Soc. 1996, 118, 12826.
[27]
(j) Sherry A.D.; Purcell K.F. J. Am. Chem. Soc. 1972, 94, 1848.
[28]
Barluenga J.; Tomas-Gamasa M.; Aznar F.; Valdes C. Angew. Chem., Int. Ed. 2010, 49, 4993.
[29]
Cui H.; Wang Y.X.; Wang Y.H.; Fan Y.Z.; Zhang L.; Su C.Y. CrysEngComm 2016, 18, 2203.
[30]
Wang Y.X.; Cui H.; Zhang L.; Su C.Y. ChemCatChem 2018, 10, 3901.
[31]
Anding B.J.; Ellern A.; Woo L.K. Organometallics 2014, 33, 2219.
[32]
Zhao X.; Zhang Y.; Wang J. Chem. Commun. 2012, 48, 10162.
[33]
Li M.L.; Chen M.Q.; Xu B.; Zhu S.F.; Zhou Q.L. Acta Chim. Sinica 2018, 76, 883.
[33]
( 李茂霖, 陈梦青, 徐彬, 朱守非, 周其林, 化学学报, 2018, 76, 883.).
[34]
Li Y.; Zhao Y.T.; Zhou T.; Chen M.Q.; Li Y.P.; Huang M.Y.; Xu Z.C.; Zhu S.F.; Zhou Q.L. J. Am. Chem. Soc. 2020, 142, 10557.
[35]
Gallo R.D.C.; Burtoloso A.C.B. Green Chem. 2018, 20, 4547.
[36]
Rudrawar S.; Besra R.C.; Chakraborti A.K. Synthesis 2006, 2767.
[36]
(b) Chakraborti A.K.; Gulhane R. Chem. Commun. 2003, 1896.
[36]
(c) Chakraborti A.K.; Chankeshwara S.V. Org. Biomol. Chem. 2006, 4, 2769.
[37]
Zhang Z.P.; Yu Y.; Huang F.; Yi X.Y.; Xu Y.; He Y.D.; Baelld J.B.; Huang H. Green Chem. 2020, 22, 1594.
[38]
Zhu C.H.; Xu G.Y.; Ding D.; Qiu L.; Sun J.T. Org. Lett. 2015, 17, 4244.
[39]
(a) Yang G.; Zu Y.G.; Zhou L.J. J. Phys. Org. Chem. 2008, 21, 34.
[39]
(b) Gomes J.R.B. J. Phys. Chem. A 2009, 113, 1628.
[39]
(c) Brines L.M.; Coggins M.K.; Poon P.C.Y.; Toledo S.; Kaminsky W.; Kirk M.L.; Kovacs J.A. J. Am. Chem. Soc. 2015, 137, 2253.
[39]
(d) Cao Y.H.; Shih W.C.; Ozerov O.V. Organometallics 2019, 38, 4076.
[40]
Dias M.P.; Burtoloso A.C.B. Org. Lett. 2016, 18, 3034.
Outlines

/