Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes

  • Yang Yang ,
  • Li Ruomei ,
  • Wang Wei ,
  • Xu Zi-Wen ,
  • Xie Guanghui ,
  • Lu Zhengquan ,
  • Li Jingjing ,
  • Song Liping ,
  • Li Wei-Shi
Expand
  • a College of Science, Shanghai University, Shanghai 200444;
    b Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c College of Chemistry and Material Sciences, Shanghai Normal University, Shanghai 200034;
    d Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, Zhengzhou 450044

Received date: 2020-06-11

  Revised date: 2020-07-29

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21674125, 21672251, 51761145043), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000) and the Zhengzhou Institute of Technology.

Abstract

Single-walled carbon nanotubes (SWNTs) prepared by present methods are a mixture of semiconducting and metallic ones, which need to be separated and purified to give them full play with their excellent properties and for their attractive applications. Among numerous developed methods, the selective separation of semiconducting and metallic SWNTs by polymer non-covalent interactions is considered to be the most simple, efficient and no-damage to carbon nanotube structure and properties method. So far, a lot of works have been reported, and many polymer systems have been developed. Meanwhile, various separation and purification mechanisms have been proposed, but there are still no unified and convincing understandings. In this review, the reported SWNT solubilization and selective separation works are summarized, the interactions between polymer and SWNTs are analyzed, and the effects of polymer structures, molecular weights, side chain lengths, polymer/SMNT ratio, temperature, and solvent are focally discussed. After comparing various separating mechanisms, our own understandings and views are put forward.

Cite this article

Yang Yang , Li Ruomei , Wang Wei , Xu Zi-Wen , Xie Guanghui , Lu Zhengquan , Li Jingjing , Song Liping , Li Wei-Shi . Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3249 -3261 . DOI: 10.6023/cjoc202006019

References

[1] Iijima, S. Nature 1991, 354, 56.
[2] Carlson, L. J.; Krauss, T. D. Acc. Chem. Res. 2008, 41, 235.
[3] Zhang, H.; Wu, B.; Hu, W.; Liu, Y. Chem. Soc. Rev. 2011, 40, 1324.
[4] Wang, H.; Wang, Y.; Tee, B. C. K.; Kim, K.; Lopez, J.; Cai, W.; Bao, Z. Adv. Sci. 2015, 2, 1500103.
[5] Ha, M.; Xia, Y.; Green, A. A.; Zhang, W.; Frisbie, C. D. ACS Nano 2010, 8, 4388.
[6] Chae, S. H.; Yu, W. J.; Bae, J. J.; Dinh Loc, D.; Perello, D.; Jeong, H. Y.; Quang Huy, T.; Thuc Hue, L.; Quoc An, V.; Yun, M.; Duan, X.; Lee, Y. H. Nat. Mater. 2013, 12, 403.
[7] Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Nat. Nanotechnol. 2006, 1, 60.
[8] Krupke, R.; Hennrich, F.; Lohneysen, H.; Kappes, M. M. Science 2003, 301, 344.
[9] Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 1545.
[10] Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640.
[11] Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H.; Tok, J. B.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.
[12] Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. J. Am. Chem. Soc. 2011, 133, 652.
[13] O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.
[14] Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 3439.
[15] Shaffer, M. S. P.; Windle, A. H. Adv. Mater. 1999, 11, 937.
[16] Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S. J.; dos Santos, M. C.; Scherf, U.; Loi, M. A. Adv. Mater. 2013, 25, 2948.
[17] Wang, H.; Bao, Z. Nano Today 2015, 10, 737.
[18] Fong, D.; Adronov, A. Chem. Sci. 2017, 8, 7292.
[19] Vaisman, L.; Wagner, H. D.; Marom, G. Adv. Colloid Interface Sci. 2007, 128-130, 37.
[20] Di Crescenzo, A.; Di Profio, P.; Siani, G.; Zappacosta, R.; Fontana, A. Langmuir 2016, 32, 6559.
[21] Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R. Langmuir 2004, 20, 6085.
[22] Yudasaka, M.; Zhang, M.; Jabs, C.; Iijima, S. Appl. Phys. A: Mater. Sci. Process. 2000, 71, 449.
[23] Di Crescenzo, A.; Aschi, M.; Fontana, A. Macromolecules 2012, 45, 8043.
[24] Yurekli, K.; Mitchell, C. A.; Krishnamoorti, R. J. Am. Chem. Soc. 2004, 126, 9902.
[25] Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563.
[26] Manivannan, S.; Jeong, I. O.; Ryu, J. H.; Lee, C. S.; Kim, K. S.; Jang, J.; Park, K. C. J. Mater. Sci.:Mater. Electron. 2009, 20, 223.
[27] Pasquinelli, S. S. T. a. M. A. J. Phys. Chem. B 2010, 114, 4122.
[28] Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. Adv. Mater. 1998, 10, 1091.
[29] Coleman, J. N.; Dalton, A. B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J. Adv. Mater. 2000, 12, 213.
[30] Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. J. Phys. Chem. B 2000, 104, 10012.
[31] Yi, W.; Malkovskiy, A.; Xu, Y.; Wang, X.-Q.; Sokolov, A. P.; Lebron-Colon, M.; Meador, M. A.; Pang, Y. Polymer 2010, 51, 475.
[32] In het Panhuis, M.; Maiti, A.; Dalton, A. B.; van den Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. J. Phys. Chem. B 2003, 107, 478.
[33] Yi, W.; Malkovskiy, A.; Chu, Q.; Sokolov, A. P.; Colon, M. L.; Meador, M.; Pang, Y. J. Phys. Chem. B 2008, 112, 12263.
[34] Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034.
[35] Kang, Y. K.; Lee, O.-S.; Deria, P.; Kim, S. H.; Park, T.-H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Nano Lett. 2009, 9, 1414.
[36] Chen, Y.; Xu, Y.; Wang, Q.; Gunasinghe, R. N.; Wang, X. Q.; Pang, Y. Small 2013, 9, 870.
[37] Wei, X.; Maimaitiyiming, X. Macromol. Chem. Phys. 2020, 221.
[38] Tange, M.; Okazaki, T.; Iijima, S. J. Am. Chem. Soc. 2011, 133, 11908.
[39] Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. Small 2014, 10, 360.
[40] Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Polym. Chem. 2019, 10, 6440.
[41] Fukumaru, T.; Toshimitsu, F.; Fujigaya, T.; Nakashima, N. Nanoscale 2014, 6, 5879.
[42] Foroutan, M.; Nasrabadi, A. T. J. Phys. Chem. B 2010, 114, 5320.
[43] Stranks, S. D.; Habisreutinger, S. N.; Dirks, B.; Nicholas, R. J. Adv. Mater. 2013, 25, 4365.
[44] Imin, P.; Cheng, F.; Adronov, A. Polym. Chem. 2011, 2, 411.
[45] Wang, H.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. ACS Nano 2014, 8, 2609.
[46] Lee, M.-H.; Lee, S.-H.; Kim, J.; Lee, S. Y.; Lim, D.-H.; Hwang, K.; Hwang, H.; Jung, Y. C.; Noh, Y.-Y.; Kim, D.-Y. Carbon 2017, 125, 571.
[47] Gomulya, W.; Derenskyi, V.; Kozma, E.; Pasini, M.; Loi, M. A. Adv. Funct. Mater. 2015, 25, 5858.
[48] Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R. T.; Wong, H.-S. P.; Bao, Z. Adv. Electron. Mater. 2016, 2, 1500299.
[49] Min, S. H.; Kim, H.-I.; Kim, K.-S.; Cha, I.; Ha, S.; Yun, W. S.; Kwak, S. K.; Kim, J.-H.; Kim, B.-S.; Song, C. Polymer 2016, 96, 63.
[50] Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338.
[51] Zaremba, O.; Goldt, A.; Ramirez-Morales, M.; Khabushev, E. M.; Shulga, E.; Eremin, T.; Prikazchikova, T.; Orekhov, A.; Grebenko, A.; Zatsepin, T. S.; Obraztsova, E. D.; Nasibulin, A. G. Carbon 2019, 151, 175.
[52] Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004, 126, 1014.
[53] Yan, L. Y.; Li, W.; Fan, X. F.; Wei, L.; Chen, Y.; Kuo, J.-L.; Li, L.-J.; Kwak, S. K.; Mu, Y.; Chan-Park, M. B. Small 2010, 6, 110.
[54] Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003, 378, 481.
[55] Gifford, B. J.; Weight, B. M.; Kilina, S. J. Phys. Chem. C 2019, 123, 24807.
[56] Han, J.; Ji, Q.; Qiu, S.; Li, H.; Zhang, S.; Jin, H.; Li, Q. Chem. Commun. 2015, 51, 4712.
[57] Gomulya, W.; Rios, J. M. S.; Derenskyi, V.; Bisri, S. Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M. C.; Loi, M. A. Carbon 2015, 84, 66.
[58] Chen, F.; Wang, B.; Chen, Y.; Li, L.-J. Nano Lett. 2007, 7, 3013.
[59] Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. ACS Macro Lett. 2012, 1, 815.
[60] Rice, N. A.; Subrahmanyam, A. V.; Laengert, S. E.; Adronov, A. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 2510.
[61] Lei, T.; Chen, X.; Pitner, G.; Wong, H. S.; Bao, Z. J. Am. Chem. Soc. 2016, 138, 802.
[62] Fong, D.; Adronov, A. Macromolecules 2017, 50, 8002.
[63] Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R. J. J. Am. Chem. Soc. 2008, 130, 3543.
Outlines

/