Article

Convenient Method for Preparingα-Ketoarylthioamide by Air Oxidation under Base Conditions

  • Cong Wang ,
  • Yaoyao Yao ,
  • Jun Xie ,
  • Jianta Wang ,
  • Feiqing Wang ,
  • Jiquan Zhang ,
  • Lei Tang
Expand
  • a College of Pharmacy, Guizhou Medical University, Guiyang 550025
    b State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014
    c The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001
    d Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D, Guizhou Medical University, Guiyang 550004

Received date: 2020-06-04

  Revised date: 2020-07-30

  Online published: 2020-08-19

Supported by

the National Natural Science Foundation of China(81560559); the National Natural Science Foundation of China(81703356); the Natural Science Research Fund of Guizhou Education Department(黔教合KY字[2021]161); the Scientific and Technological Foundation of Guizhou Health Committee(gzwjk2019-1-179); the Mobile Postdoctoral Center of Guizhou Medical University

Abstract

A practical method for preparing α-ketoaryl thioamide by air oxidation has been developed. Under air atmosphere, in the presence of K2CO3 as base and dimethyl sulfoxide (DMSO) as solvent at 120 ℃, a variety of α-ketoarylthioamides were obtained from aryl thioamide in yields of 42%~85%. This reaction has good substrate applicability, metal-free and atomic economy, and provides an efficient, economical, green and convenient method for the synthesis of α-ketoaryl thioamide.

Cite this article

Cong Wang , Yaoyao Yao , Jun Xie , Jianta Wang , Feiqing Wang , Jiquan Zhang , Lei Tang . Convenient Method for Preparingα-Ketoarylthioamide by Air Oxidation under Base Conditions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 370 -375 . DOI: 10.6023/cjoc202002011

References

[1]
(a) Franz G.; Sheldon R.A. Oxidation, InUllmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
[1]
(b) Backvall J.E. Modern Oxidation Methods, Wiley-VCH, Weinheim, 2010.
[2]
(a) Shilov A.E.; Shul'Pin G.B. Chem. Rev. 1997, 97, 2879.
[2]
Sheldon R.; Kochi J.K. Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New York, 1981.
[3]
Muzart J. Chem. Rev. 1992, 92, 113.
[4]
Shul'pin G.B.; Vinogradov M.M.; Shul'pina L.S. Catal. Sci. Technol. 2018, 8, 4287.
[5]
Kim H.S.; Kim Y.J.; Lee H.; Park K.Y.; Chin C.S. Angew. Chem., Int. Ed. 2002, 41, 4300.
[6]
(a) Hill C.L. Nature 1999, 401, 436.
[6]
(b) Noyori R.; Aoki M.; Sato K. Chem. Commun. 2003, 1977.
[6]
(c) Alfonsi K.; Colberg J.; Dunn P.J.; Fevig T.; Jennings S.; Johnson T.A.; Kleine H.P.; Knight C.; Nagy M.A.; Perry D. A.; Stefaniak M. Green Chem. 2008, 10, 31.
[6]
(d) Oller I.; Malato S.; Sánchez-Pérez J.A. Sci. Total Environ. 2011, 409, 4141.
[7]
(a) Creary X.; Zhu C. J. Am. Chem. Soc. 1995, 117, 5859.
[7]
(b) Coleman C.; MacElroy J.M.D.; Gallagher J.F.; O'Shea D.F. J. Comb. Chem. 2002, 4, 87.
[7]
(c) Zou J.P.; Wang X.S.; Wang Z.T.; Lu Z.E. Org. Prep. Proced. Int. 2002, 34, 208.
[7]
(d) Guinchard X.; Vallée Y.; Denis J.N. J. Org. Chem. 2007, 72, 3972.
[7]
(e) Li M.; Cao G.-R.; Zhao J.-W.; Wen L.-L.; Liu Y.-J.; Xia Y.-M.; Zhu S.-Z. Tetrahedron Lett. 2009, 50, 6247.
[7]
(f) Poor M.A.; Darehkordi A.; Anary-Abbasinejad M.; Sodkouieh S.M. J. Heterocycl. Chem. 2017, 54, 2781.
[7]
(g) Ravez S.; Corbet C.; Spillier Q.; Robin A.D.; Mullarky E.; Cantley L.C.; Feron O.; Frederick R. J. Med. Chem. 2017, 60, 1591.
[8]
Nguyen T.B.; Retailleau P. Green Chem. 2017, 19, 5371.
[9]
Ravez S.; Corbet C.; Spillier Q.; Dutu A.; Robin A.D.; Mullarky E.; Cantley L.C.; Feron O.; Frédérick R. J. Med. Chem. 2017, 60, 1591.
[10]
Yu P.; Wang Y.W.; Zeng Z.G.; Chen Y.F. J. Org. Chem. 2019, 84, 14883.
[11]
Paul N.; Sathishkumar R.; Anuba C.; Muthusubramanian S. RSC Adv. 2013, 3, 7445.
[12]
(a) Eftekhari-Sis B.; Khajeh S.V.; Büyükgüngör O. Synlett 2013, 24, 977.
[12]
(b) Saeidian H.; Vahdati-Khajehi S.; Bazghosha H.; Mirjafary Z. J. Sulfur Chem. 2014, 35, 700.
[12]
(c) Saeidian H.; Vahdati-Khajehi S.; Amini S.M.; Zirak M.; Saraei M.J. Sulfur Chem. 2013, 34, 464.
[13]
(a) Asinger F.; Gentz F. Angew. Chem., Int. Ed. 1963, 2, 397.
[13]
(b) Creary X.; Zhu C. J. Am. Chem. Soc. 1995, 117, 5859.
[14]
Gan L.; Gao Y.; Wei L.; Wan J.P. J. Org. Chem. 2019, 2, 1064.
[15]
Li H.Z.; Xue W.J.; Wu A.X. Tetrahedron 2014, 70, 4645.
[16]
Liu W.; Chen C.; Zhou P. ChemistrySelect 2017, 2, 5532.
[17]
Darabi H.R.; Aghapoor K.; Tabar-Heydar K.; Nooshabadi M. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 1189.
[18]
(a) Nguyen T.B.; Tran M.Q.; Ermolenko L.; Al-Mourabit A. Org, Lett. 2014, 16, 310.
[18]
(b) Xu H.L.; Deng H.; Li Z.K.; Xiang H.F.; Zhou X.G. Eur. J. Org. Chem. 2013, 31, 7054.
[19]
(a) Coats S.J.; Link J.S.; Hlasta D.J. Org. Lett. 2003, 5, 721.
[19]
(b) Kaleta Z.; Makowski B.T.; Soós T.; Dembinski R. Org. Lett. 2006, 8, 1625.
[19]
(c) Curphey T.J. J. Org. Chem. 2002, 67, 6461.
[20]
Valdez-Rojas J.E.; Rios-Guerra H.; Ramirez-Sanchez A.L.; Garcia-Gonzalez G.; Alvarez-Toledano C.; Lopez-Cortes J.G.; Toscano R. A.; Penieres-Carrillo J.G. Can. J. Chem. 2012, 90, 567.
[21]
Moghaddam F.M.; Mirjafary Z.; Saeidian H.; Javan M.J. Synlett 2008, 892.
[22]
(a) Chebolu R.; Bahuguna A.; Sharma R.; Mishra V.K.; Ravikumar P.C. Chem. Commun. 2015, 51, 15438.
[22]
(b) Shen W.G.; Wu Q.Y.; Gong X.Y.; Liu F.; Ao G. Green Chem. 2019, 21, 2983.
[23]
(a) Hu M.; Wu W.Q.; Jiang H.F. ChemSusChem 2019, 12, 2911.
[23]
(b) Ye R.; Cao Y.; Xi X.; Liu L.; Chen T. Org. Biomol. Chem. 2019, 17, 4220.
[24]
(a) Zhang X.M.; Guo Y.J.; Tao G.D.; Zhang W. Chin. J. Org. Chem. 2017, 37, 2993. (in Chinese)
[24]
( 张新明, 郭玉军, 陶贵德, 张武, 有机化学, 2017, 37, 2993.).
[24]
Park K.K.; Tsou L.K.; Hamilton A.D. Synthesis 2006, 3617.
[25]
Ravez S.; Corbet C.; Spillier Q.; Feron O.; Frédérick R. WO 2017/157882, 2017.
Outlines

/