Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents

  • Yan Xiaojing ,
  • Li Chang ,
  • Jin Zhixiong ,
  • Xu Xiaofei ,
  • Chen Weiwei ,
  • Pan Yuanjiang
Expand
  • a Departement of Chemistry, Zhejiang University, Hangzhou 310027;
    b College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053

Received date: 2020-06-21

  Revised date: 2020-08-09

  Online published: 2020-08-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21532005, 21502168) and the National Key R&D Program of China (No. 2016YFF0200503).

Abstract

A catalytic system capable of selectively promoting the cyclopropanation reaction and C—S bond cleavage reaction was established. For the reactions between phenyl vinyl sulfide and diazoacetonitrile (generated by in situ method), the cyclopropanation reaction products were obtained under the catalysis of hemin chloride, and the C—S bond cleavage reaction products were generated in the presence of FePc. All the reations were operated without inert gas protection or high temperature, and the target products were obtained by stirring at room temperature for 1 h in moderate to excellent yields.

Cite this article

Yan Xiaojing , Li Chang , Jin Zhixiong , Xu Xiaofei , Chen Weiwei , Pan Yuanjiang . Iron Porphyrin Complexes Catalyzed Cyclopropanation Reactions and C-S Bond Cleavage Reactions for Phenyl Vinyl Sulfides and Diazoreagents[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3837 -3846 . DOI: 10.6023/cjoc202006043

References

[1] (a) Nguyen, T. B. Adv. Synth. Catal. 2017, 359, 1066.
(b) Trost, B. M. Chem. Rev. 1978, 78, 363.
(c) Trost, B. M. Acc. Chem. Res. 1978, 11, 453.
(d) Ranu, B. C.; Jana, R. Adv. Synth. Catal. 2005, 347, 1811.
(e) Peng, H. J.; Cheng, Y. F.; Ni, N. T.; Li, M. Y.; Choudhary, G.; Chou, H. T.; Lu, C. D.; Tai, P. C.; Wang, B. H. ChemMedChem 2009, 4, 1457.
(f) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582.
(g)Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
(h) Screttas, C. G. J. Org. Chem. 1979, 44, 713.
(i) Yin, J. M.; Pidgeon, C. Tetrahedron Lett. 1997, 38, 5953.
(j) Couch, E. D.; Auvil, T. J.; Mattson, A. E. Chem.-Eur. J. 2014, 20, 8283.
(k) Dairo, T. O.; Woo, L. K. Organometallics 2017, 36, 927.
[2] (a) Ahmed, K.; Saikia, G.; Paul, S.; Baruah, S. D.; Talukdar, H.; Sharma, M.; Islam, N. S. Tetrahedron 2019, 75, 130605.
(b) Rayati, S.; Rezaie, S.; Nejabat, F. J. Coord. Chem. 2019, 72, 1466.
(c) Gogoi, S. R.; Boruah, J. J.; Sengupta, G.; Saikia, G.; Ahmed, K.; Bania, K. K.; Islam, N. S. Catal. Sci. Technol. 2015, 5, 595.
(d) Boruah, J. J.; Das, S. P.; Ankireddy, S. R.; Gogoi, S. R.; Islam, N. S. Green Chem. 2013, 15, 2944.
(e) Tamami, B.; Yeganeh, H. Eur. Polym. J. 1999, 35, 1445.
(f) Batigalhia, F.; Zaldini, H. M.; Ferreira, A. G.; Malvestiti, I.; Cass, Q. B. Tetrahedron 2001, 57, 9669.
(g) Ghiron, A. F.; Thompson, R. C. Inorg. Chem. 1989, 28, 3647.
[3] (a) Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
(b) Sun, C.-C.; Xu, K.; Zeng, C.-C. ACS Sustainable Chem. Eng. 2019, 7, 2255.
[4] (a) Kobayashi, S.; Ishitani, H.; Nagayama, S. Synthesis 1995, 1195.
(b) Kobayashi, S.; Komiyama, S.; Ishitani, H. Biotechnol. Bioeng. 1998, 61, 23.
(c) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721.
[5] Trost, B. M.; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4743.
[6] Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. L. Org. Lett. 2019, 21, 4771.
[7] Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 15525.
[8] (a) Lo, J. C.; Gui, J. H.; Yabe, Y.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.
(b) Lo, J. C.; Kim, D.; Pan, C. M.; Edwards, J. T.; Yabe, Y.; Gui, J. H.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
[9] Debien, L.; Braun, M. G.; Quiclet, S. B.; Zard, S. Z. Org. Lett. 2013, 15, 6250.
[10] (a) Liu, J. G.; Ueda, M. J. Mater. Chem. 2009, 19, 8907.
(b) Rodygin, K. S.; Ananikov, V. P. Green Chem. 2016, 18, 482.
[11] (a) Galardon, E.; Le, M. P.; Simonneaux, G. Tetrahedron 2000, 56, 615.
(b) Patil, D. V.; Cavitt, M. A.; Grzybowski, P.; France, S. Chem. Commun. 2011, 47, 10278.
(c) Chawner, S. J.; Cases, T. M. J.; Bull, J. A. Eur. J. Org. Chem. 2017, 5015.
(d) Chandgude, A. L.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 15852.
(e) Tinoco, A.; Wei, Y.; Bacik, J. P.; Carminati, D. M.; Moore, E. J.; Ando, N.; Zhang, Y.; Fasan, R. ACS Catal. 2019, 9, 1514.
[12] Schmidt, C. D.; Kaschel, J.; Schneider, T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2013, 15, 6098.
[13] Gryko, D.; Giedyk, M.; Goliszewska, K.; ó Proinsias, K. Chem. Commun. 2016, 52, 1389.
[14] (a) Mehta, V. P.; Modha, S. G.; Van, E. E. J. Org. Chem. 2009, 74, 6870.
(b) Kunchithapatham, K.; Eichman, C. C.; Stambuli, J. P. Chem. Commun. 2011, 47, 12679.
(c) Empel, C.; Hock, K. J.; Koenigs, R. M. Chem. Commun. 2019, 55, 338.
(d) Du, B. N.; Wang, W. M.; Wang, Y.; Qi, Z. H.; Tian, J. Q.; Zhou, J.; Wang, X. C.; Han, J. L.; Ma, J.; Pan, Y. Chem.-Asian J. 2018, 13, 404.
(e) Ghosh, P.; Ganguly, B.; Perl, E.; Das, S. Tetrahedron Lett. 2017, 58, 2751.
(f) Majouga, A. G.; Beloglazkina, E. K.; Moiseeva, A. A.; Shilova, O. V.; Manzheliy, E. A.; Lebedeva, M. A.; Davies, E. S.; Khlobystov, A. N.; Zyk, N. V. Dalton Trans. 2013, 42, 6290.
(g) Desnoyer, A. N.; Love, J. A. Chem. Soc. Rev. 2017, 46, 197.
[15] (a) Sun, R.; Du, Y.; Tian, C.; Li, L.; Wang, H.; Zhao, Y. L. Adv. Syn. Catal. 2019, 361, 5684.
(b) Yan, X. J.; Li, C.; Xu, X. F.; He, Q.; Zhao, X. Y.; Pan, Y. J. Tetrahedron 2019, 75, 3081.
(c) Yan, X. J.; Li, C.; Xu, X. F.; Zhao, X. Y.; Pan, Y. J. Adv. Synth. Catal. 2020, 362, 2005.
[16] (a) Schmink, J. R.; Dockrey, S. A. B.; Zhang, T. Y.; Chebet, N.; Venrooy, A.; Sexton, M.; Lew, S. I.; Chou, S.; Okazaki, A. Org. Lett. 2016, 6360.
(b) Liu, T, Qiu, R. H.; Zhu, L. Z.; Yin, S. F.; Au, C. T.; Kambe, N. Chem.-Asian J. 2018, 13, 3833.
(c) Matt, C.; Kölblin, F.; Streuff, J. Org. Lett. 2019, 21, 6983.
[17] Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Adv. Synth. Catal. 2015, 357, 3341.
[18] Xu, X. F.; Li, C.; Tao, Z. H.; Pan, Y. J. Green Chem. 2017, 19, 1245.
[19] Xu, X. F.; Li, C.; Xiong, M. T.; Tao, Z. H.; Pan, Y. J. Chem. Commun. 2017, 53, 6219.
[20] Fu, Y.; Zhang, Y. L.; Gao, Z. H.; Wu, Y. Z.; Zhong, F. R. Org. Biomol. Chem. 2019, 17, 9994.
[21] (a) Vargas, D. A.; Tinoco, A.; Tyagi, V.; Fasan, R. Angew. Chem. Int. Ed. 2018, 57, 9911.
(b) Brandenberg, O. F.; Chen, K.; Arnold, F. H. J. Am. Chem. Soc. 2019, 141, 8989.
(c) Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.
(d) Lewis, R. D.; Garcia, B. M.; Chalkley, M. J.; Buller, A. R.; Houk. K. N.; Jennifer Kan, S. B.; Arnold, F. H. Proc. Natl. Acad. Sci. 2018, 115, 7308.
(e) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.
[22] (a) Curtius, T. Ber. Dtsch. Chem. Ges. 1898, 31, 2489.
(b) Mykhailiuk, P. K. Eur. J. Org. Chem. 2015, 2015, 7235.
(c) Empel, C.; Hock, K. J.; Koenigs, R. M. Org. Biomol. Chem. 2018, 16, 7129.
[23] Mykhailiuk, P. K.; Koenigs, R. M. Chem.-Eur. J., 2020, 26, 89.
[24] (a) Renata, H.; Lewis, R. D.; Sweredoski, M. J.; Moradian, A.; Hess, S.; Wang, Z. J.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138, 12527.
(b) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M.; You, X. Z. J. Am. Chem. Soc. 2002, 124, 13185.
[25] (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(b) Melvin, L. S. Sulfur Ylides:Emerging Synthetic Intermediates, Academic Press, New York, 1975.
[26] Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 1590.
Outlines

/