REVIEW

Application of Cascade Reactions in the Synthesis of Sprio-hetero- cycles Initiated by Intramolecular Cyclization of Alkynols

  • Shuyan Yu ,
  • Lihong Gao ,
  • Yizhe Yan ,
  • Zhigang Yin ,
  • Yongjia Shang
Expand
  • a College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
    b College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002
    c Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000

Received date: 2020-06-23

  Revised date: 2020-07-28

  Online published: 2020-08-19

Supported by

the National Natural Science Foundation of China(21602207); the Doctoral Research Fund of Zhengzhou University of Light Industry(2014BSJJ009); the Young Backbone Teachers’ Fund of Zhengzhou University of Light Industry(2019XGGJS010)

Abstract

Due to their unique stereoscopic structure and rich physical and chemical properties, spiro heterocyclic compounds have aroused the continuous attention of researchers on their efficient synthesis methods. The exo-cyclic enol ethers generated in situ by exo-dig cyclization of alkynols under the promotion of transition metals could serve as C2 synthons to react with various "amphiphilic substrates" through cascade reactions mode. These cascade reactions could afford spiro heterocyclic skeletons in highly efficient and direct manners. In this paper, the application progress of cascade reactions in the synthesis of sprio-heterocycles initiated by intramolecular cyclization of alkynols is reviewed, which aims to stimulate the disclosure of more related research work. These work is elaborated according to the different atom numbers of the "amphiphilic substrates" involved in the construction of the spiro framworks. The catalytic system and reaction mechanism are mainly described, the challenges in this field are analyzed, and the future development is also put forward.

Cite this article

Shuyan Yu , Lihong Gao , Yizhe Yan , Zhigang Yin , Yongjia Shang . Application of Cascade Reactions in the Synthesis of Sprio-hetero- cycles Initiated by Intramolecular Cyclization of Alkynols[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 582 -593 . DOI: 10.6023/cjoc202006050

References

[1]
Krapcho, A.P. Synthesis 1974, 383.
[1]
Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52,6752.
[1]
Nai, G.X.; Dai, R.Q. Technol. Dev. Chem. Ind. 2012, 41, 6. (in Chinese)
[1]
赖谷仙, 戴日强, 化工技术与开发,2012, 41, 6.).
[1]
Zou, L.; Wang, C.S.; Liang, B. New Chem. Mater. 2013, 41, 12. (in Chinese)
[1]
邹琳, 王长松, 梁兵, 化工新型材料,2013, 41, 12.).
[1]
Fan, K.Q.; Wang, X.B.; Ma, Y.P.; Yang, H.R.; Han, G.L.; Zhou, L.M.; Fang, S.M. New J. Chem. 2020, 44, 8351.
[2]
Wei, R.B.; Liang, Y. Chin. J. Org. Chem. 2008, 28, 1501. (in Chinese)
[2]
魏荣宝, 梁娅, 有机化学,2008, 28, 1501.).
[2]
Li, F.F.; Wang, L.; Chen, S.Y.; Zhu, H.M.; Ouyang, G.P. Chem. Res. Appl. 2012, 24, 1181. (in Chinese)
[2]
李飞飞, 王磊, 陈舒忆, 朱红梅, 欧阳贵平, 化学研究与应用,2012, 24, 1181.).
[2]
Wei, R.B.; Zhang, D.W.; Liu, B.; Liu, Y.; Jia, C.X. Chin. J. Org. Chem. 2009, 29, 517. (in Chinese)
[2]
魏荣宝, 张大为, 刘博, 刘洋, 李文丽, 贾辰熙, 有机化学,2009, 29, 517.).
[2]
Michael, J.B. Carbon 1997, 35, 1.
[3]
Rios, R. Chem. Soc. Rev. 2012, 41, 1060.
[4]
Kotha, S.; Panguluri, N.R.; Ali, R. Eur. J. Org. Chem. 2017, 5316.
[5]
Li, X.F. Ph. D. Dissertation, Tianjing University, Tianjing, 2003. (in Chinese)
[5]
李筱芳, 博士论文, 天津大学, 天津,2003. ).
[6]
Alcaide, B.; Almendros, P.; Alonso, J.M. Molecules 2011, 16, 7815.
[6]
Zeng, X.M. Chem. Rev. 2013, 113, 6864.
[6]
Alcaide, B.; Almendros, P. Acc. Chem. Res. 2014, 47, 939.
[7]
Solomon, V.R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488.
[7]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2015, 97, 871.
[8]
Kouznetsov, V.V.; Mendez, L. Y. V.; Gomez, C. M. M. Curr. Org. Chem. 2005, 9, 141.
[8]
Kouznetsov, V.V. Tetrahedron 2009, 65, 2721.
[8]
Fochi, M.; Caruana, L.; Bernardi, L. Synthesis 2014, 46, 135.
[9]
Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fa?anás, F.J. Angew. Chem. Int. Ed. 2008, 47, 7044.
[10]
Wang, L.; Liu, L.Y.; Chang, W.X.; Li, J. J. Org. Chem. 2018, 83, 7799.
[11]
Aho, J.E.; Pihko, P.M.; Rissa, T.K. Chem. Rev. 2005, 105, 4406.
[12]
Uckun, F.M.; Mao. C.; Vassilev, A.O.; Huang, H.; Jan, S.T. Bioorg. Med. Chem. Lett. 2000, 10, 541.
[12]
Barun, O.; Kumar, K.; Sommer, S.; Langerak, A.; Mayer, T.U.; Muller, O.; Waldman, H. Eur. J. Org. Chem. 2005, 4773.
[13]
Mead, K.T.; Brewer, B.N. Curr. Org. Chem. 2003, 7, 227.
[14]
Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fa?anás, F.J. Angew. Chem. Int. Ed. 2009, 48, 1644.
[15]
Wu, H.; He, Y.P.; Gong, L.Z. Org. Lett. 2013, 15, 460.
[16]
Liang, M. M.S. Thesis, Shangdong University, Jinan, 2018. (in Chinese)
[16]
梁曼, 硕士论文, 山东大学, 济南,2018. ).
[17]
Wang, X.H.; Dong, S.L.; Yao, Z.L.; Feng, L.; Daka, P.; Wang, H.; Xu, Z.H. Org. Lett. 2014, 16, 22.
[18]
Li, J.; Lin, L.; Hu, B.; Lian, X.; Wang, G.; Liu, X; Feng, X. Angew. Chem. Int. Ed. 2016, 55, 6075.
[19]
Gong, J.; Wan, Q.; Kang, Q. Adv. Synth. Catal. 2018, 360, 4031.
[20]
Willis, N.J.; Bray, C.D. Chem .- Eur. J. 2012, 18, 9160.
[20]
Bai, W.J.; David, J.G.; Feng, Z.G.; Weaver, M. G. Wu, K. L.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655.
[20]
Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733;.
[20]
Ai, W.; Liao, D.; Lei, X. Chin. J. Org. Chem. 2015, 35, 1615. (in Chinese)
[20]
艾文英, 廖道红, 雷晓光, 有机化学,2015, 35, 1615.).
[21]
Liang, M.; Zhang, S.; Jia, J.; Tung, C.H.; Wang, J.W.; Xu, Z.H. Org. Lett. 2017, 19, 2526.
[22]
Wang, C.S.; Cheng, Y.C.; Zhou, J.; Mei, G.J.; Wang, S.L.; Shi, F. J. Org. Chem. 2018, 83, 13861.
[23]
Gharpure, S.J.; Nanda, S.K.; Shelke, Y.G. Chem .- Eur. J. 2017, 23, 10007.
[24]
Stierle, A.A.; Stierle, D.B.; Kelly, K. J. Org. Chem. 2006, 71, 5357.
[25]
Arto, T.; Santa-Mar?a, I.S.; Chiara, M.D.; Fa?anás, F.J.; Rodríguez, F. Eur. J. Org. Chem. 2016, 5876.
[26]
Elsharif, A.M. Orient. J. Chem. 2019, 35, 658.
[26]
de Fatima, A.; Braga, T.C.; Neto, L. D. S.; Terra, B.S.; Oliveira, B. G. F.; da Silva, D.L.; Modolo, L.V. J. Adv. Res. 2015, 6, 363.
[26]
Wang, B.Z.; Xu, X.Y.; Tao, Y.C.; Ke, S.Y.; Qian, X.H.; Li, Z. Chin. J. Pestic. Sci. 2010, 12, 429. (in Chinese)
[26]
王宝珠, 徐晓勇, 陶玉成, 柯少勇, 钱旭红, 李忠, 农药学学报,2010, 12, 429.).
[27]
Kappe, C.O. Acc. Chem. Res. 2000, 33, 879.
[27]
Gong, L.Z.; Chen, X.H.; Xu, X.Y. Chem .- Eur. J. 2007, 13, 8920.
[27]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Mol. Diversity 2018, 22, 751.
[28]
Yu, S.Y.; Wu, J.X.; Lan, H.B.; Gao, L.H.; Qian, H.Y.; Fan, K.Q.; Yin, Z.G. Org. Lett. 2020, 22, 102.
[28]
Yu, S.Y.; Gao, L.H.; Lan, H.B.; Qian, H.Y.; Yin, Z.G.; Shang, Y.J. Chin. J. Org. Chem. 2020, 40, 2714. (in Chinese)
[28]
余述燕, 高丽宏, 兰宏兵, 钱恒玉, 尹志刚, 商永嘉, 有机化学,2020, 40, 2714.).
[28]
Yu, S.Y.; Wu, J.X.; Lan, H.B.; Xu, H.W.; Shi, X.F.; Zhu, X.W.; Yin, Z.G. RSC Adv. 2018, 8, 33968.
[28]
Yu, S.Y.; Gao, L.H.; Wu, J.X.; Lan, H.B.; Ma, Y.; Yin, Z.G. Chem. Pap. 2020, 74, 3303.
[28]
Yu, S.Y.; Wu, J.X.; He, X.W.; Shang, Y.J. Appl. Organomet. Chem. 2018, 32, e4156.
[28]
Yu, S.Y.; Zhang, Z.Q.; Yu, Z.Y.; Shang, Y.J. Appl. Organomet. Chem. 2014, 28, 657.
[29]
Yao, H.L.; Wang, J.; Tong, R.B. Chem. Rev. 2017, 17, 1109.
[29]
Wang, J.; Tong, R.B. J. Org. Chem. 2016, 81, 4325.
[30]
Cala, L.; Mendoza, A.; Fa?anás, F.J.; Rodríguez, F. Chem. Commun. 2013, 49, 2715.
[31]
Kambale, D.A.; Thorat, S.S.; Pratapure, M.S.; Gonnade, R.G.; Kontham, R. Chem. Commun. 2017, 53, 6641.
[32]
Teng, Q.; Qi, J.L.; Zhou, L.; Xu, Z.H.; Tung, C.H. Org. Chem. Front. 2018, 5, 990.
[33]
Jackson, S.K.; Banfield, S.C, Kerr, M.A. Org. Lett. 2005, 7, 1215.
[33]
Uliana, M.P.; Servilha, B.M.; Alexopoulos, O.; de Oliveira, K.T.; Tormena, C.F.; Ferreira, M. A. B.; Brocksom, T.J. Tetrahedron 2014, 70, 6963.
[34]
Liao, L.H.; Shu, C.; Zhang, M.M.; Liao, Y.J.; Hu, X.Y.; Zhang, Y.H.; Wu, Z.J.; Yuan, W.C.; Zhang, X.M. Angew. Chem. Int. Ed. 2014, 53, 10471.
[34]
Sun. X.X.; Zhang, H.H.; Li, G.H.; Meng, L.; Shi, F. Chem. Commun. 2016, 52, 2968.
[34]
Shu, C.; Liao, L.H; Liao. Y. J.; Hu, X.Y.; Zhang, Y.H.; Yuan, W.C.; Zhang, X.M. Eur. J. Org. Chem. 2014, 4467.
[35]
Jasper, A.; Schepmann, D.; Lehmkuhl, K.; Vela, J.M.; Buschmann, H.; Holenz, J.; Wünsch, B. Eur. J. Med. Chem. 2012, 53, 327.
[35]
Strachan, J.; Farias, J.J.; Zhang, J.; Caldwell, W.S.; Bhatti, B.S. Bioorg. Med. Chem. Lett. 2012, 22, 5089.
[36]
Sweeney, J.B. Chem. Soc. Rev. 2002, 31, 247.
[37]
Huisgen, R.; Scheer, W.; M?der, H. Angew. Chem. Int. Ed. 1969, 8, 602.
[38]
Lu, P.F. Tetrahedron 2010, 66, 2549.
[38]
Pineschi, M. Eur. J. Org. Chem. 2006, 4979.
[38]
Schneider, C. Angew. Chem. Int. Ed. 2009, 48, 2082.
[39]
Wang, B.; Liang, M.; Tang, J.; Deng, Y.T.; Zhao, J.H.; Sun, H.; Tung, C.H.; Jia, J.; Xu, Z.H. Org. Lett. 2016, 18, 4614.
[40]
Wagner, B.; Hiller, W.; Ohno, H.; Krause, N. Org. Biomol. Chem. 2016, 14, 1579.
[41]
Sun, W.S.; Zhu, G.M.; Wu, C.Y.; Hong, L.; Wang, R. Chem .- Eur. J. 2012, 18, 6737.
[41]
Singh, K.; Pramanik, S.; Hamlin, T.A.; Mondal, B.; Das, D.; Saha, J. Chem. Commun. 2019, 55, 7069.
[42]
Kusama, H.; Ebisawa, M.; Funama, H.; Iwasawa, N. J. Am. Chem. Soc. 2009, 131, 45, 16352.
[43]
Yao, T.; Zhang, X.; Larock, R.C. J. Am. Chem. Soc. 2004, 126, 40, 11164.
[44]
Patil, N.T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531.
[44]
Oh, C.H.; Reddy, V.R.; Kim, A.; Rhim, C.Y. Tetrahedron Lett. 2006, 47, 5307.
[44]
Liu, Y.H.; Zhou, S. Org. Lett. 2005, 6, 4609.
[44]
Liu, F. Ph. D. Dissertation, East China Normal University, Shanghai,2013. (in Chinese)
[44]
刘锋, 博士论文, 华东师范大学, 上海,2013. ).
[44]
Di, X.Y. Ph. D. Dissertation, East China Normal University, Shanghai,2019. (in Chinese)
[44]
底晓煜, 博士论文, 华东师范大学, 上海,2019. ).
[45]
Qi, J.L.; Teng, Q.; Thirupathi, N.; Tung, C.H.; Xu, Z.H. Org. Lett. 2019, 21, 692.
[46]
Barluenga, J.; Calleja, J.; Mendoza, A.; Rodrígue, F.; Fa?anás, F J. Chem .- Eur. J. 2010, 16, 7110.
[47]
Wang, X.; Yao, Z.; Dong, S.; Wei, F.; Wang, H.; Xu, Z.H. Org. Lett. 2013, 15, 2234.
Outlines

/