Advances in Mechanoluminescence and Its Applications

  • Chang Kai ,
  • Li Qianqian ,
  • Li Zhen
Expand
  • a Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072;
    b Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072

Received date: 2020-06-24

  Revised date: 2020-08-07

  Online published: 2020-08-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51673151, 21734007).

Abstract

In recent years, mechanoluminescence, as a unique luminescence phenomenon, exhibited huge potential applications and rapid development in stress detection, anti-counterfeiting, encryption, light sources and bio-imaging, etc. Recently, great efforts have been made on molecular aggregation science, molecular packing and intermolecular interaction in the solid state have been deeply understood, directly promoting the development and application of mechanoluminescence and photoluminescence materials. The phenomenon and mechanism of mechanoluminescence were firstly introduced, the relationship between mechanoluminescence and aggregation behaviors of organic compounds were discussed in detail. The measurement and characterization of mechanoluminescence, the relationship between applied stress and mechanoluminescence intensity, and the color of mechanoluminescence were briefly introduced, then, the current application of mechanoluminescence was highlighted. In the end, the prospect of organic mechanoluminescence materials was afforded.

Cite this article

Chang Kai , Li Qianqian , Li Zhen . Advances in Mechanoluminescence and Its Applications[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3656 -3671 . DOI: 10.6023/cjoc202006052

References

[1] (a) Bacon, F. The Advancement of Learning, Press of P. F Collier & Son, New York, 1901, pp. 208~209.
(b) Feng, A.; Smet, A. P. F. Materials 2018, 11, 484.
[2] Xie, Y.; Li, Z. Chem 2018, 4, 943.
[3] Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. N. Phys. Chem. Chem. Phys. 2006, 8, 2819.
[4] Lavrov, A. Strain 2005, 41, 135.
[5] Zhang, J.-C.; Wang, X.; Marriott, G.; Xu, C.-N. Prog. Mater. Sci. 2019, 103, 678.
[6] Chandra, B. P.; Rathore, A. S. Cryst. Res. Technol. 1995, 30, 885.
[7] Bünzli, J.-C. G.; Wong, K.-L. J. Rare Earths 2018, 36, 1.
[8] Zhang, H.; Wei, Y.; Huang, X.; Huang, W. J. Lumin. 2019, 207, 137.
[9] Chandra, B. P.; Chandra, V. K.; Jha, P.; Patel, R.; Shende, S. K.; Thaker, S.; Baghel, R. N. J. Lumin. 2012, 132, 2012.
[10] Chandra, B. P.; Chandra, V. K.; Jha, P. J. Lumin. 2013, 135, 139.
[11] Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
[12] Dang, Q.; Hu, L.; Wang, J.; Zhang, Q.; Han, M.; Luo, S.; Gong, Y.; Wang, C.; Li, Q.; Li, Z. Chem.-Eur. J. 2019, 25, 7031.
[13] Liu, F.; Tu, Z.; Fan, Y.; Li, Q.; Li, Z. ACS Omega 2019, 4, 18609.
[14] Li, W.; Huang, Q.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z.; Xu, R.; Yang, Z.; Zhao, J.; Yu, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 12727.
[15] Wang, J.; Chai, Z.; Wang, J.; Wang, C.; Han, M.; Liao, Q.; Huang, A.; Lin, P.; Li, C.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2019, 58, 17297.
[16] Yan, C.; Yang, F.; Wu, M.; Yuan, Y.; Chen, F.; Chen, Y. Macromolecules 2019, 52, 9376.
[17] Yuan, Y.; Yuan, W.; Chen, Y. Sci. China Mater. 2016, 59, 507.
[18] Chakravarty, A.; Phillipson, T. E. J. Phys. D:Appl. Phys. 2004, 37, 2175.
[19] Xie, Y.; Li, Z. Mater. Chem. Front. 2020, 4, 317.
[20] Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.
[21] Chandra, B. P.; Chandra, V. K.; Jha, P. Phys. B 2015, 463, 62.
[22] Zhang, J.-C.; Long, Y.-Z.; Yan, X.; Wang, X.; Wang, F. Chem. Mater. 2016, 28, 4052.
[23] Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Adv Mater. 2005, 17, 1254.
[24] Chandra, B. P.; Bagri, A. K.; Chandra, V. K. J. Lumin. 2010, 130, 309.
[25] Li, Q.; Tang, Y.; Hu, W.; Li, Z. Small 2018, 14, 1801560.
[26] Li, Q. Q.; Li, Z. Sci. China Mater. 2020, 63, 177.
[27] Wang, Y.; Yang, J.; Tian, Y.; Fang,M.; Liao, Q.; Wang, L.; Hu, W.; Tang, B. Z.; Li, Z. Chem. Sci. 2020, 11, 833.
[28] Tian, Y.; Gong, Y.; Liao, Q.; Wang, Y.; Ren, J.; Fang, M.; Yang, J.; Li, Z. Cell Rep. Phys. Sci. 2020, 1, 100052.
[29] Liu, F.; Wu, F.; Ling, W.; Tu, Z.; Zhang, J.; Wei, Z.; Zhu, L.; Li, Q.; Li, Z. ACS Energy Lett. 2019, 4, 2514.
[30] Tu, J.; Liu, C.; Fan, Y.; Liu, F.; Chang, K.; Xu, Z.; Li, Q.; Chen, Y.; Li, Z. J. Mater. Chem. A 2019, 7, 15662.
[31] Xie, Y.; Gong, Y.; Han, M.; Zhang, F.; Peng, Q.; Xie, G.; Li, Z. Macromolecules 2019, 52, 896.
[32] Li, Y.; Han, M.; Yang, W.; Guo, J.; Chang, K.; Wang, J.; Min, J.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 1840.
[33] Zink, J. I.; Hardy, G. E.; Sutton, J. E. J. Phys. Chem. 1976, 80, 248.
[34] Tu, J.; Fan, Y.; Wang, J.; Li, X.; Liu, F.; Han, M.; Wang, C.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 12256.
[35] Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879.
[36] Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330.
[37] Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54, 5598.
[38] Huang, G.; Jiang, Y.; Wang, J.; Li, Z.; Li, B. S.; Tang, B. Z. J. Mater. Chem. C 2019, 7, 12709.
[39] Wang, C.; Yu, Y.; Chai, Z.; He, F.; Wu, C.; Gong, Y.; Han, M.; Li, Q.; Li, Z. Mater. Chem. Front. 2019, 3, 32.
[40] Gong, Y.; Zhang, P.; Gu, Y.; Wang, J.; Han, M.; Chen, C.; Zhan, X.; Xie, Z.; Zou, B.; Peng, Q.; Chi, Z.; Li, Z. Adv. Opt. Mater. 2018, 6, 1800198.
[41] Mu, Y.; Yang, Z.; Chen, J.; Yang, Z.; Li, W.; Tan, X.; Mao, Z.; Yu, T.; Zhao, J.; Zheng, S.; Liu, S.; Zhang, Y.; Chi, Z.; Xu, J.; Aldred, M. P. Chem. Sci. 2018, 9, 3782.
[42] Li, W.; Huang, Q.; Mao, Z.; Zhao, J.; Wu, H.; Chen, J.; Yang, Z.; Li, Y.; Yang, Z.; Zhang, Y.; Aldred, M. P.; Chi, Z. Angew. Chem., Int. Ed. 2020, 59, 3739.
[43] Yu, Y.; Wang, C.; Wei, Y.; Fan, Y.; Yang, J.; Wang, J.; Han, M.; Li, Q.; Li, Z. Adv. Optical Mater. 2019, 7. 1900505.
[44] Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan, Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133.
[45] Yu, Y.; Fan, Y.; Wang, C.; Wei, Y.; Liao, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2019, 7, 13759.
[46] Wang, C.; Yu, Y.; Yuan, Y.; Ren, C.; Liao, Q.; Wang, J.; Chai, Z.; Li, Q.; Li, Z. Matter 2020, 2, 181.
[47] Fontenot, R. S.; Hollerman, W. A.; Aggarwal, M. D.; Bhat, K. N.; Goedeke, S. M. Measurement 2012, 45, 431.
[48] Hollerman, W. A.; Fontenot, R. S.; Bhat, K. N.; Aggarwal, M. D.; Guidry, C. J.; Nguyen, K. M. Opt. Mater. 2012, 34, 1517.
[49] Zhang, J.-C.; Xu, C.-N.; Wang, X.; Long, Y.-Z. Chem. Mater. 2014, 28, 4052.
[50] Terasaki, N.; Xu, C.-N. J. Colloid Interf. Sci. 2014, 427, 62.
[51] Zhang, J.-C.; Xu, C.-N.; Kamimura, S.; Terasawa, Y.; Yamada, H.; Wang, X. Opt. Express 2013, 21, 12976.
[52] Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880.
[53] Chen, Y.; Xu, C.; Xu, B.; Mao, Z.; Li, J.-A.; Yang, Z.; Peethani, N. R.; Liu, C.; Shi, G.; Gu, F. L.; Zhang, Y.; Chi, Z. Mater. Chem. Front. 2019, 3, 1800.
[54] Xiong, P.; Peng, M.; Cao, J.; Li, X. J. Am. Ceram. Soc. 2019, 102, 5899.
[55] Xie, Z.; Yu, T.; Chen, J.; Ubba, E.; Wang, L.; Mao, Z.; Su, T.; Zhang, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2018, 9, 5787.
[56] Sun, Q.; Zhang, K.; Zhang, Z.; Tang, L.; Xie, Z.; Chi, Z.; Xue, S.; Zhang, H.; Yang, W. Chem. Commun. 2018, 54, 8206.
[57] Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174.
[58] Yang, J.; Fang, M.; Li, Z. InfoMat 2020, 2, 791.
[59] Wang, J.; Wang, C.; Gong, Y.; Liao, Q.; Han, M.; Jiang, T.; Dang, Q.; Li, Y.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 16821.
[60] Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Adv. Mater. 2013, 25, 6194.
[61] Peng, D.; Chen, B.; Wang, F. Chempluschem 2015, 80, 1209.
[62] Kim, Y.; Kim, J. S.; Kim, G. W. Sci. Rep. 2018, 8, 12023.
[63] Kim, Y.; Roy, S.; Jung, G. Y.; Oh, J. S.; Kim, G. W. Sci. Rep. 2019, 9, 15215.
[64] Jiang, Y.; Wang, F.; Zhou, H.; Fan, Z.; Wu, C.; Zhang, J.; Liu, B.; Wang, Z. Mater. Sci. Eng. C 2018, 92, 374.
[65] Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L. N.; Ong, K. S.; Brinson, K., Jr.; Mahdi, A. I.; Li, J.; Fenno, L. E.; Wang, H.; Hong, G. PNAS 2019, 116, 26332.
[66] Yoshida, A.; Liu, L.; Tu, D.; Kainuma, S.; Xu, C.-N. J. Disaster Res. 2017, 12, 506.
[67] Terasaki, N. Sens. Mater. 2016, 28, 827.
[68] Xu, H.; Wang, F.; Wang, Z.; Zhou, H.; Zhang, G.; Zhang, J.; Wang, J.; Yang, S. Tribol. Lett. 2019, 67, 13.
[69] Terasaki, N.; Xu, C.-N. IEEE Sens. J. 2013, 13, 3999.
[70] Shin, S. W.; Oh, J. P.; Hong, C. W.; Kim, E. M.; Woo, J. J.; Heo, G. S.; Kim, J. H. ACS Appl. Mater. Interfaces 2016, 8, 1098.
[71] Jeong, S. M.; Song, S.; Kim, H.; Joo, K.-I.; Takezoe, H. Adv. Funct. Mater. 2016, 26, 4848.
[72] Jeong, S. M.; Song, S.; Kim, H. Nano Energy 2016, 21, 154.
[73] Jeong, S. M.; Song, S.; Joo, K.-I.; Kim, J.; Hwang, S.-H.; Jeong, J.; Kim, H. Energy Environ. Sci. 2014, 7, 3338.
[74] Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. Adv. Mater. 2015, 27, 4488.
[75] Terasaki, N.; Xu, C.-N.; Imai, Y.; Yamada, H. Jpn. J. Appl. Phys. 2007, 46, 2385.
[76] Patel, D. K.; Cohen, B.-E.; Etgar, L.; Magdassi, S. Mater. Horiz. 2018, 5, 708.
[77] Lynch, J. P.; Pulliam, E.; Hoover, G.; Tiparti, D.; Ryu, D. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 2017 (DOI:10.1117/12.2260318).
[78] Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; Choi, K. C. Adv. Mater. 2020, 32, 1903488.
[79] Shrivastava, S.; Trung, T. Q.; Lee, N. E. Chem. Soc. Rev. 2020, 49, 1812.
[80] Jeong, S. M.; Song, S.; Seo, H.-J.; Choi, W. M.; Hwang, S.-H.; Lee, S. G.; Lim, S. K. Adv. Sustainable Syst. 2017, 1, 1700126.
[81] Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; Hu, X.; Wang, X.; Pan, C.; Song, Y. Adv. Mater. 2018, 30, 1800291.
[82] Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. ACS Appl. Mater. Interfaces 2019, 11, 5200.
[83] Zhang, J.; Bao, L.; Lou, H.; Deng, J.; Chen, A.; Hu, Y.; Zhang, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2017, 5, 8027.
[84] Liang, G.; Ruan, Z.; Liu, Z.; Li, H.; Wang, Z.; Tang, Z.; Mo, F.; Yang, Q.; Ma, L.; Wang, D.; Zhi, C. Adv. Electron. Mater. 2019, 5. 1900553.
[85] Monette, Z.; Kasar, A. K.; Menezes, P. L. J. Mater. Sci.-Mater. Electron. 2019, 30, 19675.
[86] Wang, X.; Que, M.; Chen, M.; Han, X.; Li, X.; Pan, C.; Wang, Z. L. Adv. Mater. 2017, 29, 1605817.
[87] Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.
[88] Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K.; Im, W. B.; Park, J. U. Nano Lett. 2020, 20, 66.
[89] Arppe, R.; Sørensen, T. J. Nat. Rev. Chem. 2017, 1, 0031.
[90] Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X.; Qiu, J. Adv. Mater. 2018, 30, 1804644.
[91] Zuo, Y.; Xu, X.; Tao, X.; Shi, X.; Zhou, X.; Gao, Z.; Sun, X.; Peng, H. J. Mater. Chem. C 2019, 7, 4020.
[92] Kenry; Duan, Y.; Liu, B. Adv. Mater. 2018, 30, 1802394.
[93] Xiong, P.; Peng, M. J. Mater. Chem. C 2019, 7, 6301.
[94] Li, L.; Wondraczek, L.; Li, L.; Zhang, Y.; Zhu, Y.; Peng, M.; Mao, C. ACS Appl. Mater. Interfaces 2018, 10, 14509.
[95] Gong, Y.; He, S.; Li, Y.; Li, Z.; Liao, Q.; Gu, Y.; Wang, J.; Zou, B.; Li, Q.; Li, Z. Adv. Opt. Mater. 2020, 8, 1902036.
[96] Li, J. A.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449.
[97] Mukherjee, S.; Thilagar, P. Angew. Chem., Int. Ed. 2019, 58, 7922.
[98] Ubba, E.; Tao, Y.; Yang, Z.; Zhao, J.; Wang, L.; Chi, Z. Chem.-Asian. J. 2018, 13, 3106.
[99] Li, Q.; Li, Z. Adv. Sci. 2017, 4, 1600484.
[100] Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.
[101] Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299.
[102] Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.
[103] Liu, F.; Bi, S.; Wang, X.; Leng, X.; Han, M.; Xue, B.; Li, Q.; Zhou, H.; Li, Z. Sci. China:Chem. 2019, 62, 739.
[104] Yang, J.; Chi, Z.; Zhu, W.; Tang, B.; Li, Z. Sci. China:Chem. 2019, 62, 1090.
[105] Liao, Q.; Gao, Q.; Wang, J.; Gong, Y.; Peng, Q.; Tian, Y.; Fan, Y.; Guo, H.; Ding, D.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2020, 59, 9946.
[106] Song, Y.; Xu, L.; Wu, Q.; Xiao, S.; Zeng, H.; Gong, Y.; Li, C.; Cheng, S.; Li, Q.; Zhang, L.; Li, Z. Small Methods 2020, 4, 1900779.
[107] Zong, L.; Zhang, H.; Li, Y.; Gong, Y.; Li, D.; Wang, J.; Wang, Z.; Xie, Y.; Han, M.; Peng, Q.; Li, X.; Dong, J.; Qian, J.; Li, Q.; Li, Z. ACS Nano 2018, 12, 9532.
[108] Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese). (杨杰, 李振, 有机化学, 2019, 39, 3304.)
[109] Zhou, Z.; Song, J.; Nie, L.; Chen, X. Chem. Soc. Rev. 2016, 45, 6597.
[110] Fang, M.; Yang, J.; Li. Z. Chin. J. Polym. Sci. 2019, 37, 383.
[111] Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li. Z. Nat. Commun. 2018, 9, 840.
Outlines

/