Tris(trimethylsilyl)silane/O2-Promoted and Photo-accelerated Conversion of Alkyl Iodides to Alcohols

  • Li Jianyu ,
  • Zeng Jinlong ,
  • Chen Jianfeng ,
  • Zhao Baoguo
Expand
  • Key Laboratory of Resource Chemistry of Ministry of Education and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234

Received date: 2020-06-26

  Revised date: 2020-08-05

  Online published: 2020-08-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672148), the Shanghai Municipal Education Commission (No. 2019-01-07-00-02-E00029) and the Shanghai Engineering Research Center of Green Energy Chemical Engineering.

Abstract

A mild method for the conversion of alkyl iodides to alcohols was developed. The transformation was promoted by tris(trimethylsilyl)silane/O2 and accelerated by photoredox catalysis under visible light irradiation conditions. Various alkyl iodides, including primary, secondary and tertiary iodides, can be smoothly converted to the corresponding alcohols in 38%~99% yields.

Cite this article

Li Jianyu , Zeng Jinlong , Chen Jianfeng , Zhao Baoguo . Tris(trimethylsilyl)silane/O2-Promoted and Photo-accelerated Conversion of Alkyl Iodides to Alcohols[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3853 -3857 . DOI: 10.6023/cjoc202006055

References

[1] (a) Larock, R. C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, New York, 1999, p. 890.
(b) Smith, M. D.; March, J. Advanced Organic Chemistry, 6th ed., Wiley-Interscience, New York, 2007, p. 425.
[2] (a) Harris, M.; Bull, M. J. Synth. Commun. 1985, 15, 1225.
(b) Alexander, J.; Renyer, M. L.; Veerapanane, H. Synth. Commun. 1995, 25, 3875.
(c) Ruddick, C. L.; Hodge, P.; Houghton, M. P. Synthesis 1996, 1359.
(d) Abad, A.; Agulló, C.; Cuñat, A.C.; Navarro, I. Synthesis 2005, 3355.
(e) Chougala, B. M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L. A. ChemistrySelect 2017, 2, 1290.
(f) Liu, H.; Liu, J.; Cheng, X.; Jia, X.; Yu, L.; Xu, Q. ChemSusChem 2019, 12, 2994.
[3] (a) Nakamura, E.; Inubushi, T.; Aoki, S.; Machii, D. J. Am. Chem. Soc. 1991, 113, 8980.
(b) Nakamura, E.; Sato, K.; Imanishi, Y. Synlett 1995, 525.
(c) Sawamura, M.; Kawaguchi, Y.; Nakamura, E. Synlett 1997, 801.
(d) Sawamura, M.; Kawaguchi, Y.; Sato, K.; Nakamura, E. Chem. Lett. 1997, 26, 705.
[4] Cai, Y.-M.; Xu, Y.-T.; Zhang, X.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 8479.
[5] (a) Itoh, A.; Kodama, T.; Inagaki, S.; Masaki, Y. Org. Lett. 2001, 3, 2653.
(b) Li, J.; Wang, H.; Liu, L.; Sun, J. RSC Adv. 2014, 4, 49974.
(c) Xu, J.; Liu, N.; Zou, L.; Cheng, F.; Shen, X.; Liu, T.; Lv, H.; Khan, R.; Fan, B. Asian J. Org. Chem. 2019, 8, 261.
[6] (a) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Dai X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
(d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(f) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.
[7] (a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
(b) Chatgilialoglu, C.; Ferreri, C.; Landais, Y.; Timokhin, V. I. Chem. Rev. 2018, 118, 6516.
[8] Mills, I. N.; Porras, J. A.; Bernhard, S. Acc. Chem. Res. 2018, 51, 352.
[9] (a) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A. Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(b) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
(c) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
[10] (a) Stien, D.; Gastaldi, S. J. Org. Chem. 2004, 69, 4464.
(b) Damont, A.; Médran-Navarrete, V.; Cacheux, F.; Kuhnast, B.; Pottier, G.; Bernards, N.; Marguet, F.; Puech, F.; Boisgard, R.; Dolle, F. J. Med. Chem. 2015, 58, 7449.
(c) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.
[11] (a) Lee, K. C.; Lee, S.-Y.; Choe, Y. S.; Chi, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1225.
(b) Nicholson, J. S.; Richards, H. C.; Adams, S. S. GB 1030756, 1966.
(c) Osako, T.; Torii, K.; Hirata, S.; Uozumi, Y. ACS Catal. 2017, 7371.
(d) Itami, K.; Kamei, T.; Mitsudo, K.; Nokami, T.; Yoshida, J. J. Org. Chem. 2001, 66, 397.
(e) Khan, S. N.; Zaman, M. K.; Li, R.; Sun, Z. J. Org. Chem. 2020, 85, 5019.
(f) Sakai, N.; Kawana, K.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Eur. J. Org. Chem. 2011, 2011, 3178.
(g) Reddy, A. G. K.; Krishna, J.; Satyanarayana, G. ChemistrySelect 2016, 1, 1151.
(h) Cavedon, C.; Madani, A.; Seeberger, P. H.; Pieber, B. Org. Lett. 2019, 21, 5331.
(i) Ishibashi, M. J. Polym. Sci. B Polym. Lett. 1964, 2, 789.
(j) Reddy, M. V.; Kang, S. M.; Yoo, S.; Woo, S. S.; Kim, D. W. RSC. Adv. 2019, 9, 9435.
(k) Rysak, V.; Descamps-Mandine, A.; Simon, P.; Blanchard, F.; Burylo, L.; Trentesaux, M.; Vandewalle, M.; Collière, V.; Agbossou-Niedercorn, F.; Michon, C. Catal. Sci. Technol. 2018, 8, 3504.
(l) Green, R. A.; Jolley, K. E.; Al-Hadedi, A. A. M.; Pletcher, D.; Harrowven, D. C.; De Frutos, O.; Mateos, C.; Klauber, D. J.; Rincón, J. A.; Brown, R. C. D. Org. Lett. 2017, 19, 2050.
(m) Xu, G.; Leloux, S.; Zhang, P.; Meijide Suárez, J.; Zhang, Y.; Derat, E.; Ménand, M.; Bistri-Aslanoff, O.; Roland, S.; Leyssens, T.; Riant, O.; Sollogoub, M. Angew. Chem., Int. Ed. 2020, 59, 7591.
(n) Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M. ChemCatChem 2009, 1, 504.
(o) Rösler, S.; Obenauf, J. Kempe, R. J. Am. Chem. Soc. 2015, 137, 7998.
(p) Soulard, V.; Villa, G.; Vollmar, D. P.; Renaud, P. J. Am. Chem. Soc. 2018, 140, 155.
(q) Zhong, R.; Wei, Z.; Zhang, W.; Liu, S.; Liu, Q. Chem 2019, 5, 1552.
(r) Ungnade, H. E. J. Org. Chem. 1948, 13, 361.
(s) Weng, W.-Z.; Liang, H.; Zhang, B. Org. Lett. 2018, 20, 4979.
(t) Polidano, K.; Williams, J. M. J.; Morrill, L. C. ACS Catal. 2019, 9, 8575.
(u) Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Adv. Synth. Catal. 2002, 344, 328.
(v) Parshikov, I. A.; Modyanova, L. V.; Dovgilivich, E. V.; Terent'ev, P. B.; Vorob'eva, L. I.; Grishina, G. V. Chem. Heterocycl. Compd. (Engl. Transl.) 1992, 28, 159.
(w) Aguilar Troyano, F. J.; Ballaschk, F.; Jaschinski, M.; Ӧzkaya, Y.; Gómez-Suórez, A. Chem. Eur. J. 2019, 25, 14054.
(x) Bach, R. D.; Taaffee, T. H.; Holubka, J. W. J. Org. Chem. 1980, 45, 3439.
(y) Boonyarattanakalin, S.; Martin, S. E.; Dykstra, S. A.; Peterson, B. R. J. Am. Chem. Soc. 2004, 126, 16379.
(z) Matt, C.; Kern, C.; Streuff, J. ACS Catal. 2020, 10. 6409.
(aa) Pujari, N. S.; Kulkarni, M. R.; Large, M. C. J.; Bassett, I. M.; Ponrathnam, S. J. Appl. Polym. Sci. 2005, 98, 58.
(ab) Toogood, H. S.; Cheallaigh, A. N.; Tait, S.; Mansell, D. J.; Jervis, A.; Lygidakis, A.; Humphreys, L.; Takano, E.; Gardiner, J. M.; Scrutton, N. S. ACS Synth. Biol. 2015, 4, 1112.
(ac) Zengin, G. Chem. Nat. Compd. 2011, 47, 550.
Outlines

/