Recent Progress of Photocatalytic Methylation of Arenes

  • Du Jianbo ,
  • Chen Yuegang ,
  • Zuo Zhiwei
Expand
  • a School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-06-30

  Revised date: 2020-08-07

  Online published: 2020-08-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772121, 21971163).

Abstract

Methylation of arenes is one of the versatile approaches to achieve structural modification in organic and medicinal chemistry. Installation of a methyl group onto an aromatic ring can lead to significant improvenent of the physical properties and biological activity of this molecule, thusly the effect oftentimes is called the“magic methyl effect”. During the past few years, visible-light-induced photocatalysis has emerged as a powerful tool for the development of efficient transformations in organic synthesis. Compared to traditional radical mediated reactions, the use of visible light as energy input is more environmentally benign. Recently, a series of aryl methylation reactions enabled by visible light photoredox catalysis have been reported and applied in the synthesis of pharmaceutically-interested products. In this review, the recent progress of visible-light-induced aryl methylation reactions is briefly summaried, with discussions of different reaction pathways.

Cite this article

Du Jianbo , Chen Yuegang , Zuo Zhiwei . Recent Progress of Photocatalytic Methylation of Arenes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3646 -3655 . DOI: 10.6023/cjoc202006079

References

[1] (a) Friesen, R. W.; Brideau, C.; Chan, C. C.; Charleson, S.; Deschanes, D.; Dub, D.; Ethier, D.; Fortin, R.; Gauthier, J. Y.; Girard, Y.; Gordon, R.; Greig, G. M.; Riendeau, D.; Savoie, C.; Wang, Z.; Wong, E.; Visco, D.; Xu, L.-J.; Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 2777.
(b) Li, L.; Beaulieu, C.; Carriere, M. C.; Denis, D.; Greig, G.; Guay, D.; ONeill, G.; Zamboni, R.; Wang. Z. Bioorg. Med. Chem. Lett. 2010, 20, 7462.
(c) Ginnings, P. M.; Baum. R. J. Am. Chem. Soc. 1937, 59, 1111.
[2] Schönherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256.
[3] (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
(b) Barreiro, E. J.; Kmmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215.
[4] (a) Potthast, A.; Rosenau, T.; Chen, C.-L.; Gratzl, J. S. J. Org. Chem. 1995, 60, 4320.
(b) Friedman, L.; Fishel, D. L.; Shechter, H. J. Org. Chem. 1965, 30, 1453.
(c) Friedman, L. Org. Synth. 1963, 43, 80.
(d) Das, S.; Bhowmick, T.; Punnyamurthy, T.; Dey, D.; Nath, J.; Chaudhuri, M. K. Tetrahedron Lett. 2003, 44, 4915.
(e) Shimada, K.; Nanae, T.; Aoyagi, S.; Takikawa, Y.; Kabuto, C. Tetrahedron Lett. 2001, 42, 6167.
[5] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(c) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(d) Yan, G.-B.; Borah, A. J.; Wang, L.-G.; Yang, M.-H. Adv. Synth. Catal. 2015, 357, 1333.
(e) Chen, Y.-T. Chem.-Eur. J. 2019, 25, 3405.
(f) Hu, L.; Liu, Y.-A.; Liao, X. Synlett 2018, 29, 375.
(g) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature 2020, 580, 621.
(h) Feng, B.; Yang, Y.; You, J. Chem. Sci. 2020, 11, 6031.
(i) Chen, X.-Y.; Sorensen, E. J. J. Am. Chem. Soc. 2018, 140, 2789.
(j) He, Z.-T.; Li, H.; Haydl, A.; Whiteker, G.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 17197.
(k) Serpier, F.; Pan, F.; Ham, W. S.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2018, 57, 10697.
(l) Lv, W.; Wen, S.; Liu, J.; Cheng, G. J. Org. Chem. 2019, 84, 9786.
[6] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(e) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(f) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2019, 62, 24.
[7] (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(b) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.
(c) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
[8] ana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
[9] Zhang, P.; Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084.
[10] Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
[11] Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 16192.
[12] Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 9938.
[13] Schuster, G. B. Pure Appl. Chem. 1990, 62, 156.
[14] (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
(b) Proctor, R. S.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
[15] DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802.
[16] Komai, T.; Matsuyama, K.; Matsushima, M. Bull. Chem. Soc. Jpn. 1988, 61, 1641.
[17] MorletSavary, F.; Wieder, F.; Fouassier, J. P. J. Chem. Soc. Faraday Trans. 1997, 93, 3931.
[18] Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
[19] Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.
[20] Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219.
[21] Li, G.-X.; Christian A.; Rivera, M.; Wang, Y.-X.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[22] (a) Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.
(b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
(c) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
(d) Khatib, M. E.; Seraphim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254.
[23] Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 2059.
[24] Liu, W.-B.; Yang, X.-B.; Zhou, Z.-Z.; Li, C.-J. Chemistry 2017, 2, 688.
[25] Sherwood, T. C.; Li, N.; Yazdani, A. N.; Dhar, T. G. M. J. Org. Chem. 2018, 83, 3000.
[26] Garza-Sanchez, R. A.; Patra, T.; Tlahuext-Aca, A.; Strieth-Kalthoff, F.; Glorius, F. Chem.-Eur. J. 2018, 24, 10064.
[27] Hu, A.-H.; Guo, J.-J.; Pan, H.; Zuo, Z.-W. Science 2018, 361, 668.
[28] Zidan, M.; Morris, A. O.; McCallum, T.; Barriault, L. Eur. J. Org. Chem. 2020, 1453.
[29] Li, Z.-L.; Wang, X.-F.; Xia, S.-Q.; Jin, J. Org. Lett. 2019, 21, 4259.
[30] Le, C.; Liang, Y.-F.; Evans, R. W.; Li, X.-M.; MacMillan, D. W. C. Nature 2017, 547, 79.
Outlines

/