Research Progress of Antibiotics Conjugated with Siderophores

  • Liu Jun ,
  • Hou Jinsong ,
  • Meng Ying ,
  • Miao Zhiying ,
  • Lin Jing ,
  • Chen Weimin
Expand
  • College of Pharmacy, Jinan University, Guangzhou 510632

Received date: 2020-06-21

  Revised date: 2020-08-20

  Online published: 2020-08-27

Supported by

Project supported by the National Natural Science Foundation of China (No. 81872776).

Abstract

The natural siderophore is a class of small-molecule iron ion chelating agents secreted by bacteria, which can be recognized by specific outer membrane receptors and transported into cytoplasm to provide iron for bacteria. Using this characteristic of siderophore, antibiotics can be coupled with them and enter into bacteria through the bacterial iron uptake system. This strategy is called "Trojan horse" strategy. Recently, cefiderocol, the first siderophore-antibiotic conjugate, was approved for marketing, which has aroused accumulated interest of scientists and pharmaceutical companies in this field. This paper provides a comprehensive review of the progress in antibiotics conjugated with siderophores from three aspects:the types of siderophore molecules, antibiotics with different action mechanisms, and the role of linkers. The basic relationship between anti-bacterial activity and three moieties of this novel type of anti-bacterial agents has been revealed. This review will provide a reference for the development of new antibiotics conjugated with siderophores.

Cite this article

Liu Jun , Hou Jinsong , Meng Ying , Miao Zhiying , Lin Jing , Chen Weimin . Research Progress of Antibiotics Conjugated with Siderophores[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3026 -3043 . DOI: 10.6023/cjoc202006042

References

[1] Zaman, S. B.; Hussain, M. A.; Nye, R. Mehta, V.; Mamun, K. T.; Hossain, N. Cureus 2017, 9, 1403.
[2] Brown, E. D.; Wright, G. D. Nature 2016, 529, 336.
[3] Blair, J. M.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Nat. Rev. Microbiol. 2015, 13, 42.
[4] Rossiter, S. E.; Fletcher, M. H.; Wuest, W. M. Chem. Rev. 2017, 117, 2415.
[5] Lewis, K. Nat. Rev. Drug Discovery 2013, 12, 371.
[6] Abouelhassan, Y.; Garrison, A, T.; Yang, H.; Chavez-Riveros, A.; Burch, G. M.; Huigens, R. W. I. J. Med. Chem. 2019, 6, 7618.
[7] Soares, M. P.; Weiss, G. EMBO Rep. 2015, 16, 1482.
[8] Hider, R. C.; Kong, X. Nat. Prod. Rep. 2010, 27, 637.
[9] Gorska, A.; Sloderbach, A.; Marszall, M. P. Trends Pharmacol. Sci. 2014, 35, 442.
[10] Page, M. G. Ann. N. Y. Acad. Sci. 2013, 1277, 115.
[11] Ferguson, A. D.; Braun, V.; Fiedler, H. P.; Coulton, J. W.; Diederichs, K.; Welte, W. Protein Sci. 2000, 9, 956.
[12] Clarke, T. E.; Braun, V.; Winkelmann, G.; TariL, W.; Vogel, H. J. J. Biol. Chem. 2002, 277, 13966.
[13] Braun, V.; Pramanik, A.; Gwinner, T.; Koberle, M.; Bohn, E. Biometals 2009, 22, 3.
[14] Juarez-Hernandez, R. E.; Miller, P. A.; Miller, M. J. ACS Med. Chem. Lett. 2012, 3, 799.
[15] Vertesy, L.; Aretz, W.; Fehlhaber, H. W.; Kogler H. Helv. Chim. Aata 1995, 78, 46.
[16] Roosenberg, J. M.; Miller, M. J. J. Org. Chem. 2000, 65, 4833
[17] Braun, V. K.; Günthner, H.; Zimmermann, L. J. Bacteriol. 1983, 156, 308.
[18] Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B. K.; Bhattacharjee, S.; Tribedi, P. Environ. Sci. Pollut. Res. Int. 2016, 23, 3984.
[19] Bilitewski, U.; Blodgett, J. Duhme-Klair, A.K.; Dallavalle, S. Laschat, S.; Routledge, A.; Schobert, R. Angew. Chem., Int. Ed. 2017, 56, 14360.
[20] Abouelhassan, Y.; Garrison, A. T.; Yang, H.; Chavez-Riveros, A.; Burch, G. M.; Huigens, R. R. J. Med. Chem. 2019, 62, 7618.
[21] Madsen, J. L.; Johnstone, T. C.; Nolan, E. M. J. Am. Chem. Soc. 2015, 137, 9117.
[22] Ji, C.; Miller, P. A.; Miller, M. J. J. Am. Chem. Soc. 2012, 134, 9898.
[23] Mislin, G. L.; Schalk, I. J. Metallomics 2014, 6, 408.
[24] Muller, G.; Barclay, S. J.; Raymond, K. N. J. Biol. Chem. 1985, 260, 13916.
[25] Sayer, J. M.; Emery, T. F. Biochemistry 1968, 7, 184.
[26] Krewulak, K. D.; Vogel, H. J. Biochim. Biophys. Acta 2008, 1778, 1781.
[27] Miethke, M.; Marahiel, M. A. Microbiol. Mol. Biol. Rev. 2007, 71, 413.
[28] Winkelmann, G. Biometals 2007, 20, 379.
[29] Mollmann, U.; Heinisch, L.; Bauernfeind, A.; Kohler, T.; Ankel- Fuchs, D. Biometals 2009, 22, 615.
[30] Ballouche, M.; Cornelis, P.; Baysse, C. Recent Pat. Anti-Infect. Drug Discovery 2009, 4, 190.
[31] Murphy-Benenato, K. E.; Bhagunde, P. R.; Chen, A; Davis, H. E.; Durand-Reville, T. F.; Ehmann, D. E. J. Med. Chem. 2015, 58, 2159.
[32] Dolence, E. K.; Minnick, A. A.; Miller, M. J. J. Med. Chem. 1990, 33, 461.
[33] Mckee, J. A.; Sharma, S. K.; Miller, M. J. Bioconjugate Chem. 1991, 2, 281.
[34] Ramurthy, S.; Miller, M. J. J. Org. Chem. 1996, 61, 4120.
[35] Minnick, A. A.; Mckee, J. A.; Dolence, E. K.; Miller, M. J. Antimicrob. Agents Chem. 1992, 36, 840.
[36] Ghosh, A.; Ghosh, M.; Niu, C.; Malouin, F.; Moellmann, U.; Miller, M. J. Chem. Biol. 1996, 3, 1011.
[37] Ghosh, M.; Miller, M. J. Bioorg. Med. Chem. 1996, 4, 43.
[38] Kinzel, O.; Tappe, R.; Gerus, I.; Budzikiewicz, H. J. Antibiot. 1998, 51, 499.
[39] Heinisch, L.; Wittmann, S.; Stoiber, T.; Berg, A.; Ankel-Fuchs, D.; Mollmann, U. J. Med. Chem. 2002, 45, 3032.
[40] Heinisch, L.; Wittmann,S.; Stoiber, T.; Scherlitz-Hofmann, I.; Ankel-Fuchs, D.; Mollmann, U. Arzneim. Forsch. 2003, 53, 188.
[41] Ji, C.; Miller, P. A.; Miller, M. J. J. Am. Chem. Soc. 2012, 134, 9898.
[42] Ji, C.; Miller, M. J. Bioorg. Med. Chem. 2012, 20, 3828.
[43] Miller, M. J.; Zhu, H.; Xu, Y.; Wu, C.; Walz, A. J.; Vergne, A.; Roosenberg, J. M.; Moraski, G.; Minnick, A. A.; Mckee-Dolence, J.; Hu, J.; Fennell, K.; Kurtdolence, E.; Dong, L.; Franzblau, S.; Malouin, F.; Mollmann, U. Biometals 2009, 22, 61.
[44] Cimarusti, C. M.; Sykes, R. B. Med. Res. Rev. 1984, 4, 1.
[45] Bush, K.; Freudenberger, J. S.; Sykes, R.B. Antimicrob. Agents Chem. 1982, 22, 414.
[46] Cusnir,R.; Imberti, C.; Hider, R.C.; Blower, P. J.; Ma, M. T. Int. J. Mol. Sci. 2017, 18, 1161.
[47] Barbachyn, M. R.; Tuominen, T. C. J. Antibiot. 1990, 43, 1199.
[48] Han, S.; Zaniewski, R. P.; Marr, E. S.; Lacey, B. M.; Tomaras, A. P.; Evdokimov, A.; Miller, J. R.; Shanmugasundaram, V. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22002.
[49] Flanagan, M. E.; Brickner, S. J.; Lall, M.; Casavant, J.; Deschenes, L.; Finegan, S. M.; George, D. M.; Granskog, K.; Hardink, J. R.; Huband, M. D.; Thuy, H.; Lamb, L.; Marra, A.; Mitton-Fry, M.; Mueller, J. P.; Mullins, L. M.; Noe, M. C.; O'Donnell, J. P.; Pattavina, D.; Penzien, J. B.; Schuff, B. P.; Sun. J.; Whipple, D. A.; Young, J.; Gootz, T. D. ACS Med. Chem. Lett. 2011, 2, 385.
[50] Mcpherson, C. J.; Aschenbrenner, L. M.; Lacey, B. M.; Fahnoe, K. C.; Lemmon, M. M.; Finegan, S. M.; Tadakamalla, B.; O'Donnell, J. P.; Mueller, J. P.; Tomaras, A. P. Antimicrob. Agents Chemother. 2012, 56, 6334.
[51] Tomaras, A. P.; Crandon, J. L.; Mcpherson, C. J.; Nicolau, D. P. Antimicrob. Agents Chemother. 2015, 59, 2439.
[52] Sato, T.; Yamawaki, K. Clin. Infect. Dis 2019, 69, 529.
[53] Page, M. G.; Dantier, C.; Desarbre, E. Antimicrob. Agents Chemother. 2010, 54, 2291.
[54] Sato, T.; Yamawaki, K. Clin. Infect. Dis. 2019, 69, S538.
[55] Yamano, Y.; Nishikawa, T.; Komatsu, Y. Appl. Microbiol. Biotechnol. 1994, 40, 892.
[56] Aoki, T. Yoshizawa, H.; Yamawaki, K.; Yokoo, K.; Sato, J.; Hisakawa, S.; Hasegawa, Y.; Kusano, H.; Sano, M.; Sugimoto, H.; Nishitani, Y.; Sato, T.; Tsuji, M.; Nakamura, R.; Nishikawa, T.; Yamano, Y. Eur. J. Med. Chem. 2018, 155, 847.
[57] Bird, T. G.; Arnould, J. C.; Bertrandie, A.; Jung, F. H. J. Med. Chem. 1992, 35, 2643.
[58] Ghosh, M.; Miller, M. J. Bioorg. Med. Chem. 1995, 3, 1519.
[59] Poras, H.; Kunesch, G.; Barriere, J. C.; Berthaud, N.; Andremont, A. J. Antibiot. 1998, 51, 786.
[60] Jones, R. N.; Johnson, D. M.; Erwin, M. E. Antimicrob. Agents Chemother. 1996, 40, 720.
[61] Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. Clin. Microbiol. Infect. 2014, 204, 3.
[62] Mendes, R. E.; Hogan, P. A.; Streit, J. M.; Jones, R. N.; Flamm, R. K. Antimicrob. Agents Chemother. 2015, 59, 2454.
[63] Paulen, A.; Gasser, V.; Hoegy, F.; Perraud, Q.; Pesset, B.; Schalk, I. J.; Mislin, G. L. A. Org. Biomol. Chem. 2015, 13, 11567.
[64] Paulen, A.; Hoegy, F.; Roche, B.; Schalk, I. J.; Mislin, G. L. A. Bioorg. Med. Chem. Lett. 2017, 27, 4867.
[65] Noel, S.; Gasser, V.; Pesset, B.; Hoegy, F.; Rognan, D.; Schalk, I. J.; Mislin, G. L. A. Org. Biomol. Chem. 2011, 9, 8288.
[66] Liu, R.; Miller, P. A.; Vakulenko, S. B.; Stewart, N. K.; Boggess, W. C.; Miller, M. J. J. Med. Chem. 2018, 61, 3845.
[67] Schalk, I. J. J. Med. Chem. 2018, 61, 3842.
[68] Rivault, F.; Liebert, C.; Burger, A.; Hoegy, F.; Abdallah, M. A.; Schalk, I. J.; Mislin, G. L. A. Bioorg. Med. Chem. Lett. 2007, 17, 640.
[69] Hennard, C.; Truong, Q. C.; Desnottes, J. F.; Paris, J. M.; Moreau, N. J.; Abdallah, M. A. J. Med. Chem. 2001, 44, 2139.
[70] Barrett, J. F.; Bernstein, J. I.; Krause, H. M.; Hilliard, J. J.; Ohemeng, K. A. Anal. Biochem. 1993, 214, 313.
[71] Wencewicz, T. A.; Long, T. E.; Moellmann, U.; Miller, M. J. Bioconjugate Chem. 2013, 24, 473.
[72] Fardeau, S.; Dassonville-Klimpt, A.; Audic, N.; Sasaki, A.; Pillon, M.; Baudrin, E.; Mullie, C.; Sonnet, P. Bioorg. Med. Chem. 2014, 22, 4049.
[73] Milstien, S.; Cohen, L. A. J. Am. Chem. Soc. 1972, 94, 9158.
[74] Ji, C.; Miller, M. J. Bioorg. Med. Chem. 2012, 20, 3828.
[75] Wilhelm, S.; Tommassen, J.; Jaeger, K. E. J. Bacteriol. 1999, 181, 6977.
[76] Zheng, T.; Nolan, E. M. Bioorg. Med. Chem. Lett. 2015, 25, 4987.
[77] Gupta, D.; Gupta, S. V.; Lee, K.; Amidon, G. L. Mol. Pharmaceutics 2009, 6, 1604.
[78] Neumann, W.; Sassone-Corsi, M.; Raffatellu, M.; Nolan, E. M. J. Am. Chem. Soc. 2018, 140, 5193.
[79] Zheng, T.; Bullock, J. L.; Nolan, E. M. J. Am. Chem. Soc. 2012, 134, 18388.
[80] Neumann, W.; Nolan, E. M. J. Biol. Inorg. Chem. 2018, 23, 1025.
[81] Taylor, S. D.; Palmer, M. Bioorg. Med. Chem. 2016, 24, 6253.
[82] Ghosh, M.; Miller, P. A.; Mollmann, U.; Claypool, W. D.; Schroeder, V. A.; Wolter, W. R.; Suckow, M.; Yu, H.; Li, S.; Huang, W.; Zajicek, J.; Miller, M. J. J. Med. Chem. 2017.;60, 4577.
[83] Ghosh, M.; Lin, Y. M.; Miller, P. A.; Mollmann, U.; Boggess, W. C.; Miller, M. J. ACS Infect. Dis. 2018, 4, 1529.
[84] Randall, C. P.; Mariner, K. R.; Chopra, I.; O'Neill, A. J. Antimicrob. Agents Chemother. 2013, 57, 637.
[85] Kraaij, C.; Vos, W. M.; Siezen, R. J.; Kuipers, O. P. Nat. Prod. Rep. 1999, 16, 575.
[86] Willey, J. M.; Donk, W.A. Annu. Rev. Microbiol. 2007, 61, 477.
[87] Yoganathan, S.; Sit, C. S.; Vederas, J. C. Org. Biomol. Chem. 2011, 9, 2133.
[88] Wencewicz, T. A.; Mollmann, U.; Long, T. E.; Miller, M. J. Biometals 2009, 22, 633.
[89] Maiden, M. M.; Hunt, A.; Zachos, M. P.; Gibson, J. A.; Hurwitz, M. E.; Mulks, M. H.; Waters, C. M. Antimicrob. Agents Chemother. 2018, 62, 96.
[90] Heath, R. J.; Rubin, J. R.; Holland, D. R.; Zhang, E.; Snow, M. E.; Rock, C. O. J. Biol. Chem. 1999, 274, 11110.
[91] Bernier, G.; Girijavallabhan, V.; Murray, A.; Niyaz, N.; Ding, P.; Miller, M. J.; Malouin, F. Antimicrob. Agents Chemother. 2005, 49, 241.
[92] Yamamoto, K.; Shiinoki, Y.; Nishio, M.; Matsuda, Y.; Inouye, Y.; Nakamura, S. J. Antibiot. 1990, 43, 1012.
[93] Mollmann, U.; Ghosh, A.; Dolence, E. K.; Dolence, J. A.; Ghosh, M.; Miller, M. J.; Reissbrodt, R. Biometals 1998, 11, 1.
[94] Rivault, F.; Liebert, C.; Burger, A.; Hoegy, F.; Abdallah, M. A.; Schalk, I. J.; Mislin, G. L. Bioorg. Med. Chem. Lett. 2007, 17, 640.
[95] Souto, A.; Montaos, M. A.; Balado, M.; Osorio, C. R.; Rodriguez, J.; Lemos, M. L.; Jimenez, C. Bioorg. Med. Chem. 2013, 21, 295.
[96] Milner, S. J.; Seve, A.; Snelling, A. M.; Thomas, G. H.; Kerr, K. G.; Routledge, A.; Duhme-Klair, A. K. Org. Biomol. Chem. 2013, 11, 3461.
Outlines

/