Article

One-Pot Metal-Free Synthesis of [1,2,3]triazolo[1,5-a]-quinoxalines by Sequential Ugi-3CR/Alkyne-Azide Cycloaddition Reaction

  • Ying Shi ,
  • Fuwen Qin ,
  • Jie Wang ,
  • Yanmei Yan
Expand
  • a Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi 030619
    b Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619
    c School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006

Received date: 2020-05-13

  Revised date: 2020-07-27

  Online published: 2020-09-09

Supported by

the Fund for Shanxi “1331 Project” Key Innovative Research Team(TD201718); the Key Research and Development Projects of Shanxi Province(201803D31054); the Science Foundation for Youths of Shanxi Province(201901D211422); the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(2019L0775)

Abstract

A new one-pot metal-free preparation of [1,2,3]triazolo[1,5- a]quinoxalines by a Ugi-3CR/alkyne-azide cycloaddition sequence has been developed. The reaction of 2-azidobenzenamines, propiolic aldehydes and isocyanides produced [1,2,3]triazolo[1,5- a]quinoxalines in 55%~85% yields via sequential Ugi-3CR/alkyne-azide cycloaddition reaction in the presence of H3PO4 and heating in toluene respectively.

Cite this article

Ying Shi , Fuwen Qin , Jie Wang , Yanmei Yan . One-Pot Metal-Free Synthesis of [1,2,3]triazolo[1,5-a]-quinoxalines by Sequential Ugi-3CR/Alkyne-Azide Cycloaddition Reaction[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 297 -302 . DOI: 10.6023/cjoc202005029

References

[1]
(a) Alvarez R.; Velazquez S.; San-Felix A.; Aquaro S.; Declercq E.; Perno C.F.; Karlsson A.; Balzarini J.; Camarasa M.J. J. Med. Chem. 1994, 37, 4185.
[1]
(b) Sheng C.; Zhang W. Curr. Med. Chem. 2011, 18, 733.
[1]
(c) EI-Sagheer A.H.; Brown T.; Acc. Chem. Res. 2012, 45, 1258.
[1]
(d) Thirumurugan P.; Matosiuk D.; Jozwiak K. Chem. Rev. 2013, 113, 4905.
[1]
(e) Chen Z.K.; Cao G.J.; Song J.Y. Chin. J. Chem. 2017, 35, 1797.
[2]
Biagi G.; Giorgi I.; Livi O.; Scartoni V.; Betti L.; Giannaccini G.; Trincavelli M.L. Eur. J. Med. Chem. 2002, 37, 565.
[3]
Saha B.; Sharma S.; Sawant D.; Kundu B. Tetrahedron 2008, 64, 8676.
[4]
Chen Z.X.; Zhu J.T.; Xie H.B.; Li S.; Wu Y.M.; Gong Y.F., Adv. Synth. Catal. 2010, 352, 1296.
[5]
Li D.K.; Mao T.T.; Huang J.B.; Zhu Q. Chem. Commun. 2017, 53, 1305.
[6]
Gaetke L.M.; Chow C.K. Toxicdogy 2003, 189, 147.
[7]
(a) Dömling A.; Wang W.; Wang K. Chem. Rev. 2012, 112, 3083.
[7]
(b) Dömling A. Chem. Rev. 2006, 106, 17.
[8]
Dömling A.; Ugi I. Angew. Chem., Int. Ed. 2000, 39, 3168.
[9]
(a) Pan C. S.; List, B.Angew. Chem., Int. Ed. 2008, 47, 3622.
[9]
(b) Kumar A.; Saxena D.; Gupta M.K. Green Chem. 2013, 15, 2699.
[9]
(c) Khan A.T.; Basha R S.; Lal M.; Mir M.H. RSC Adv. 2012, 2, 5506.
[10]
Lu K.; Ma Y.T.; Gao M.L.; Liu Y.; Li M.; Xu C.M.; Zhao X.; Yu P. Org. Lett. 2016, 18, 5038.
[11]
Zhang Y.; Ao Y.F.; Huang Z.T.; Wang D.X.; Wang M.X.; Zhu J.P. Angew. Chem., Int. Ed. 2016, 55, 5282.
[12]
(a) Janvier P.; Bienaymé H.; Zhu J. Angew. Chem., Int. Ed. 2002, 41, 4291.
[12]
(b) Ilyin A.; Kysil V.; Krasavin M.; Kurashvili I.; Ivachtchenko A.V. J. Org. Chem. 2006, 71, 9544.
[12]
(c) Cheng G.S.; He X.; Tian L.; Chen J.W.; Li C.J.; Jia X.S.; Li J. J. Org. Chem. 2015, 80, 11100.
[13]
Bonnaterre F.; Bois-Choussy M.; Zhu J. Org. Lett. 2006, 8, 4351.
[14]
(a) Moni L.; Denissen M.; Valentini G.; Mueller T.J.J. Riva R. Chem. -Eur. J. 2015, 21, 753.
[14]
(b) Salcedo A.; Neuville L.; Rondot C.; Retailleau P.; Zhu J.P. Org. Lett. 2008, 10, 857.
[14]
(c) Xiang Z.; Luo T.P.; Lu K.; Cui J.Y.; Shi X.M.; Fathi R.; Chen J.H.; Yang Z. Org. Lett. 2004, 6, 3155.
[15]
(a) Xu Z.; Moliner F.D.; Cappelli A.P.; Hulme C. Angew. Chem., Int. Ed. 2012, 51, 8037.
[15]
(b) Zeng X.H.; Wang H.M.; Ding M.W. Org. Lett. 2015, 17, 2234.
[16]
(a) Zanze I.A.; Gracias V.; Djuric S.W. Tetrahedron Lett. 2004, 45, 8439.
[16]
(b) Salvador C.E.M.; Pieber B.; Neu P.M.; Torvisco A.; Andrade C.K.Z.; Kappe C.O. J. Org. Chem. 2015, 80, 4590.
[16]
(c) Zakharova E.A.; Shmatova O.I.; Kutovaya I.V.; Khrustalev V.N.; Nenajdenko V.G. Org. Biomol. Chem. 2019, 17, 3433.
[16]
(d) Vroemans R.; Bamba F.; Winters J.; Thomas J.; Jacobs J.; Meervelt L.V.; John J.; Dehaen W. Beilstein J. Org. Chem. 2018, 14, 626.
[17]
(a) Yan Y.M.; Rao Y.; Ding M.W. J. Org. Chem. 2016, 81, 1263.
[17]
(b) Yan Y.M.; Gao Y.; Ding M.W. Tetrahedron 2016, 72, 5548.
[17]
(c) Yan Y.M.; Li H.Y.; Ren J.; Wang S.; Ding M.W. Synlett 2018, 29, 1447.
[18]
Yan Y.M.; Rao Y.; Ding M.W. J. Org. Chem. 2017, 82, 2772.
[19]
(a) Zhang X.F.; Zhi S.J.; Wang W.; Liu S.; Jasinski J.P.; Zhang W. Green Chem. 2016, 18, 2642.
[19]
(b) Vekariya R.H.; Liu R.Z.; Aubé J. Org. Lett. 2014, 16, 1844.
[19]
(c) Donald J.R.; Wood R.R.; Martin S.F.; Martin S.F. ACS Comb. Sci. 2012, 14, 135.
Outlines

/