Review

Application of α-Aminoalkyl Radical in Visible Light Catalysis

  • He Zhao ,
  • Dongping Cheng ,
  • Xiaoliang Xu
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
    b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-05-21

  Revised date: 2020-05-25

  Online published: 2020-09-09

Supported by

the Natural Science Foundation of Zhejiang Province(LY18B020018); the Natural Science Foundation of Zhejiang Province(LY15B020004); the National Natural Science Foundation of China(21602197)

Abstract

Because of its low cost and environmental friendliness, visible light catalysis has been widely used in organic synthesis in recent years. Among them, α-aminoalkyl radical plays an important role because of its high activity and accessibility. The development and application of this active radical in visible light catalysis are mainly summarized and its outlook in the future is given.

Cite this article

He Zhao , Dongping Cheng , Xiaoliang Xu . Application of α-Aminoalkyl Radical in Visible Light Catalysis[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 642 -660 . DOI: 10.6023/cjoc202005055

References

[1]
Schmittel M.; Burghart A. Angew. Chem., Int. Ed. Engl. 1997, 36, 2550.
[2]
Houmam.A. Chem. Rev. 2008, 108, 2180.
[3]
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
[4]
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
[5]
Shi L.; Xia W.J. Chem. Soc. Rev. 2012, 41, 7687.
[6]
Xuan J.; Xiao W.J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[7]
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
[8]
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
[9]
Chen J.R.; Hu X.Q.; Lu L.Q.; Xiao W.J. Acc. Chem. Res. 2016, 49, 1911.
[10]
Yoon U.C.; Mariano P.S. Acc. Chem. Res. 1992, 25, 233.
[11]
Cho D.W.; Yoon U.C.; Mariano P.S. Acc. Chem. Res. 2011, 44, 204.
[12]
Nakajima K.; Nojima S.; Nishibayashi Y. Acc. Chem. Res. 2016, 49, 1946.
[13]
McNally A.; Prier C.K.; MacMillan D. W. C.Science 2011, 334, 1114.
[14]
Singh A.; Arora A.; Weaver J.D. Org. Lett. 2013, 15, 5390.
[15]
Dong J.; Xia Q.; Lv X.; Yan C.; Song H.; Liu Y.; Wang Q. Org. Lett. 2018, 20, 5661.
[16]
Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 5257.
[17]
Zuo Z.; Ahneman D.T.; Chu L.; Terrett J.A.; Doyle A.G.; Mac- Millan, D. W. C.Science 2014, 345, 437.
[18]
Zuo Z.; Cong H.; Li W.; Choi J.; Fu G.C.; MacMillan D. W. C.J. Am. Chem. Soc. 2016, 138, 1832.
[19]
Tellis J.C.; Primer D.N.; Molander G.A. Science 2014, 345, 433.
[20]
El Khatib, M.; Serafim, R. A. M.; Molander, G.A. Angew. Chem., Int. Ed. 2016, 55, 254.
[21]
Shaw.M.H.; Shurtleff, V. W.; Terrett, J. A.; MacMillan, D. W. C.Science 2016, 352, 1304.
[22]
Remeu C.; Kelly C.B.; Patel N.R.; Molander G.A. ACS Catal. 2017, 7, 6065.
[23]
Fan, L-L.; Jia, J.; Hou, H.; Lefebvre, Q.; Rueping, M.Chem.-Eur. J. 2016, 22, 16437.
[24]
Cheng W.M.; Sang R.; Fu Y. ACS Catal. 2017, 7, 907.
[25]
Ren L.; Cong H. Org. Lett. 2018, 20, 3225.
[26]
Douglas J.J.; Cole K.P.; Stephenson C. R. J.J. Org. Chem. 2014, 79, 11631.
[27]
Pratt C.J.; Aycock R.A.; King M.D.; Jui N.T. Synlett 2020, 31, 51.
[28]
Zhou W.; Cao G.M.; Shen G.; Zhu X.; Gui Y.; Ye J.; Sun L.; Liao L.J.; Yu D.G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[29]
Le C.; Liang Y.F.; MacMillan D.W. C. Nature 2017, 547, 79.
[30]
Li J.; Kong M.; Qiao B.; Lee R.; Zhao X.; Jiang Z. Nat. Commun. 2018, 9, 2445.
[31]
Zeng G.; Li Y.; Qiao B.; Zhao X.; Jiang Z. Chem. Commun. 2019, 55, 11362.
[32]
Liu Y.; Liu X.; Li J.; Zhao X.; Qiao B. Jiang Z. Chem. Sci. 2018, 9, 8094.
[33]
Noble A.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 11602.
[34]
Noble A.; McCarver S.J.; MacMillan D. W. C.J. Am. Chem. Soc. 2015, 137, 624.
[35]
Xuan J.; Zeng T.-T.; Feng Z.J.; Deng Q.H.; Chen J.R.; Lu L.Q.; Xiao W.J.; Alper H. Angew. Chem., Int. Ed. 2015, 54, 1625.
[36]
Xie J.; Shi S.; Zhang T.; Mehrkens N.; Rudolph M.; Hashmi A. S. K.Angew. Chem., Int. Ed. 2015, 54, 6046.
[37]
Kohls P.; Jadhav D.; Pandey G.; Reiser O. Org. Lett. 2012, 14, 672.
[38]
Espelt L.R.; Wiensch E.M.; Yoon T.P. J. Org. Chem. 2013, 78, 4107.
[39]
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem. Commun. 2012, 48, 6966.
[40]
Nakajima K.; Kitagawa M.; Ashida Y.; Miyake Y.; Nishibayashi Y. Chem. Commun. 2014, 50, 8900.
[41]
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
[42]
Murphy J.J.; Bastida D.; Paria S.; Fagnoni M.; Melchiorre P. Nature 2016, 532, 218.
[43]
Lin S.X.; Sun G.J.; Kang Q. Chem. Commun. 2017, 53, 7665.
[44]
Cai Y.F.; Yu R.T.; Fan, L-L.; Hou, H.; Lefebvre, Q.; Rueping, M.ACS Catal. 2018, 8, 9471.
[45]
Xi Z.W.; Yang L.; Wang D.Y.; Pu C.D.; Shen Y.M.; Wu C.D.; Peng X.G. J. Org. Chem. 2018, 83, 11886.
[46]
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. J. Am. Chem. Soc. 2015, 137, 2452.
[47]
McCarver S.J.; Qiao J.X.; Carpenter J.; Borzilleri R.M.; Poss M.A.; Eastgate M.D.; MacMillan D. W. C.Angew. Chem., Int. Ed. 2017, 56, 728.
[48]
Ju X.; Li D.; Li W.; Yu W. Adv. Synth.Catal. 2012, 354, 3561.
[49]
Guo J.T.; Yang D.C.; Guan Z.; He Y.H. J. Org. Chem. 2017, 82, 1888.
[50]
Hsu C.W.; Sunde?n H. Org. Lett. 2018, 20, 2051.
[51]
Aycock R, A.; Pratt, C, J.; Jui, N, T.ACS Catal. 2018, 9115.
[52]
Miyake Y.; Nakajima K.; Nishibayashi Y. J. Am. Chem. Soc. 2012, 134, 3338.
[53]
Mizoguchi H.; Oikawa H.; Oguri H. Nat. Chem. 2014, 6, 57.
[54]
Zhu S.; Das A.; Bui L.; Zhou H.; Curran D.P.; Rueping M. J. Am. Chem. Soc. 2013, 135, 1823.
[55]
Dai X.; Cheng D.; Guan B.; Mao W.; Xu X.; Li X. J. Org. Chem. 2014, 79, 7212.
[56]
Dai X.; Mao R.; Guan B.; Xu X.; Li X. RSC Adv. 2015, 5, 55290.
[57]
Hepburn H.B.; Melchiorre P. Chem. Commun. 2016, 52, 3520.
[58]
Yin Y.; Dai Y.; Jia H.; Li J.; Bu L.; Qiao B.; Zhao X.; Jiang Z. J. Am. Chem. Soc. 2018, 140, 6083.
[59]
Chu L.; Ohta C.; Zuo Z.; MacMillan D. W. C.J. Am. Chem. Soc. 2014, 136, 10886.
[60]
Miyazawa K.; Koike T.; Akita M. Adv. Synth. Catal. 2014, 356, 2749.
[61]
McManus J.B.; Onuska N.P.; Nicewicz D.A. J. Am. Chem. Soc. 2018, 140, 9056.
[62]
Grübel M.; Jandl C.; Bach T. Synlett 2019, 30, 1825.
[63]
Ashley M.A.; Yamauchi C.; Chu J.C.; Otsuka S.; Yorimitsu H.; Rovis T. Angew. Chem., Int. Ed. 2019, 58, 4002.
[64]
Flode?n N.J.; Trowbridge A.; Willcox D.; Walton S.M.; Kim Y.; Gaunt M.J. J. Am. Chem. Soc. 2019, 141, 8426.
[65]
Miyake Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2012, 18, 16473.
[66]
Zhou H.; Lu P.; Gu X.; Li P. Org. Lett. 2013, 15, 5646.
[67]
Itoh K.; Kato R.; Kinugawa D.; Kamiya H.; Kudo R.; Hasegawa M.; Fujii H.; Suga H. Org. Biomol. Chem. 2015, 13, 8919.
[68]
Uraguchi D.; Kinoshita N.; Kizu T.; Ooi T. J. Am. Chem. Soc. 2015, 137, 13768.
[69]
Fava E.; Millet A.; Nakajima M.; Loescher S.; Rueping M. Angew. Chem., Int. Ed. 2016, 55, 6776.
[70]
Han B.; Li Y.; Yu Y.; Gong L. Nat. Commun. 2019, 10, 3804.
[71]
Proctor R. S. J.; Davis H.J.; Phipps R.J. Science 2018, 360, 419.
[72]
Liu X.; Liu Y.; Chai G.; Qiao B.; Zhao X.; Jiang Z. Org. Lett. 2018, 20, 6298.
[73]
Ji J.; Zhu Z.; Xiao L.; Zhu X.; Le Z. Org. Chem. Front. 2019, 6, 3693.
[74]
Zhang P.; Xiao T.; Xiong S.; Dong X.; Zhou L. Org. Lett. 2014, 16, 3264.
[75]
Miyake Y.; Ashida Y.; Nakajima K.; Nishibayashi Y. Chem.-Eur. J. 2014, 20, 6120.
[76]
Nakajima K.; Ashida Y.; Nojima S.; Nishibayashi Y. Chem. Lett. 2015, 44, 545.
[77]
Constantin T.; Zanini M.; Regni A.; Sheikh N.S.; Julia F.; Leonori D. Science 2020, 367, 1021.
[78]
Zhou X.S.; Yan D.M.; Chen J.R. Chem 2020, 6, 823.
[79]
Li J.; Gu Z.; Zhao X.; Qiao B.; Jiang Z. Chem. Commun. 2019, 55, 12916.
Outlines

/