Recent Advances in Visible-Light-Promoted Transformation of Alkyl Boron Compounds

  • Shi Dunfa ,
  • Wang Lu ,
  • Xia Chungu ,
  • Liu Chao
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-18

  Revised date: 2020-08-29

  Online published: 2020-09-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21673261, 91745110, 21872156), the Natural Science Foundation of Jiangsu Province (Nos. BK20190002, BK20181194) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2018458).

Abstract

Organoboron compounds are valuable synthetic intermediates and widely used in the synthesis of medicine, pesticide and organic optoelectronic materials due to their extensive resouce and highly transformable ability. Among various organoboron compounds, the synthesis and transformation of alkylboron compounds have attracted much attention. As a sustainable and green energy, visible light shows an important effect in organic systhesis. Tetracoordinated alkylboron compounds could occur single electron transfer (SET) process to generate alkyl radical for further transformations. Herein, the recent advances in the photoinduced transformation of alkyl boron compounds are summarized.

Cite this article

Shi Dunfa , Wang Lu , Xia Chungu , Liu Chao . Recent Advances in Visible-Light-Promoted Transformation of Alkyl Boron Compounds[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3605 -3619 . DOI: 10.6023/cjoc202006033

References

[1] Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.
[2] Brown, H. C.; Tierney, P. A. J. Am. Chem. Soc. 1958, 80, 1552.
[3] (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
(b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
(c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
[4] Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652.
[5] Lennox, A. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
[6] (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
(b) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
[7] (a) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2018, 62, 24.
(b) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(c) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
[8] Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6, 5366.
[9] Duan, K.; Yan, X.; Liu, Y.; Li, Z. Adv. Synth. Catal. 2018, 360, 2781.
[10] Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
[11] Dai, J. J.; Zhang, W. M.; Shu, Y. J.; Sun, Y. Y.; Xu, J.; Feng, Y. S.; Xu, H. J. Chem. Commun. 2016, 52, 6793.
[12] Heitz, D. R.; Rizwan, K.; Molander, G. A. J. Org. Chem. 2016, 81, 7308.
[13] Shi, D.; Xia, C.; Liu, C. CCS Chem. 2020, 2, 1718.
[14] Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[15] Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
[16] Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.
[17] Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 9847.
[18] Alam, R.; Molander, G. A. J. Org. Chem. 2017, 82, 13728.
[19] Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Chem.-Eur. J. 2016, 22, 120.
[20] Tellis, J. C.; Amani, J.; Molander, G. A. Org. Lett. 2016, 18, 2994.
[21] Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 436.
[22] Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085.
[23] Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
[24] Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int.Ed. 2019, 58, 13666.
[25] Li, G. X.; Morales-Rivera, C. A.; Wang, Y. X.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[26] Zhang, W. M.; Dai, J. J.; Xu, J.; Xu, H. J. J. Org. Chem. 2017, 82, 2059.
[27] Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[28] Yan, H.; Hou, Z. W.; Xu, H. C. Angew. Chem., Int. Ed. 2019, 58, 4592.
[29] Amani, J.; Sodagar, E.; Molander, G. A. Org. Lett. 2016, 18, 732.
[30] Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
[31] Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426.
[32] Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612.
[33] Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
[34] Liu, W.; Liu, P.; Lv, L.; Li, C. J. Angew. Chem., Int. Ed. 2018, 57, 13499.
[35] Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.
[36] Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 7249.
[37] Miyazawa, K.; Koike, T.; Akita, M. Adv. Synth. Catal. 2014, 356, 2749.
[38] Li, Y.; Miyazawa, K.; Koike, T.; Akita, M. Org. Chem. Front. 2015, 2, 319.
[39] Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv. 2015, 5, 21297.
[40] Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.; Yoshimi, Y. Chem. Commun. 2018, 54, 1257.
[41] Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.
[42] Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[43] Tutkowski, B.; Meggers, E.; Wiest, O. J. Am. Chem. Soc. 2017, 139, 8062.
[44] Plasko, D. P.; Jordan, C. J.; Ciesa, B. E.; Merrill, M. A.; Hanna, J. M. Photochem. Photobiol. Sci. 2018, 17, 534.
[45] Yi, J.; Badir, S. O.; Alam, R.; Molander, G. A. Org. Lett. 2019, 21, 4853.
[46] Yu, X. Y.; Zhou, Q. Q.; Wang, P. Z.; Liao, C. M.; Chen, J. R.; Xiao, W. J. Org. Lett. 2018, 20, 421.
[47] Liu, M.; Huang, H.; Chen, Y. Chin. J. Chem. 2018, 36, 1209.
[48] Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
[49] Li, X.; Han, M.-Y.; Wang, B.; Wang, L.; Wang, M. Org. Biomol. Chem. 2019, 17, 6612.
[50] Sim, J.; Campbell, M. W.; Molander, G. A. ACS Catal. 2019, 9, 1558.
[51] Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.
[52] Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
[53] Lima, F.; Grunenberg, L.; Rahman, H. B. A.; Labes, R.; Sedelmeier, J.; Ley, S. V. Chem. Commun. 2018, 54, 5606.
[54] Chen, Y.; May, O.; Blakemore, D. C.; Ley, S. V. Org. Lett. 2019, 21, 6140.
[55] Ye, H.; Ye, Q.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2046.
[56] Ye, H.; Zhao, H.; Ren, S.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2019, 60, 1302.
[57] Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
[58] Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
[59] Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
[60] Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jorgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.
[61] Weng, W. Z.; Liang, H.; Zhang, B. Org. Lett. 2018, 20, 4979.
[62] Liu, T.; Li, Y.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 3605.
[63] Ye, S.; Li, X.; Xie, W.; Wu, J. Asian J. Org. Chem. 2019, 8, 893.
[64] Liu, T.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2018, 5, 3153.
[65] Gong, X.; Yang, M.; Liu, J.-B.; He, F.-S.; Wu, J. Org. Chem. Front. 2020, 7, 938.
[66] Clausen, F.; Kischkewitz, M.; Bergander, K.; Studer, A. Chem. Sci. 2019, 10, 6210.
Outlines

/