Chinese Journal of Organic Chemistry >
Recent Advance of Transition-Metal-Catalyzed Tandem Carboxylation Reaction of Unsaturated Hydrocarbons with Organometallic Reagents and CO2
Received date: 2020-07-04
Revised date: 2020-08-14
Online published: 2020-09-09
Supported by
the National Natural Science Foundation of China(21871163); the National Natural Science Foundation of China(91645120); the National Natural Science Foundation of China(21472106)
Carbon dioxide (CO 2), as a one-carbon synthon, has many advantages such as abundant, non-toxic, clean and so on. So the reactions using CO 2 as a one-carbon synthon have been widely concerned in organic chemistry. Transition-metal- catalyzed reaction of unsaturated hydrocarbons with CO 2 to produce carboxylic acid is one of the most commonly-used method to convert CO 2, and organometallic reagents can be added to the reaction as reducing agent. This kind of reaction can be realized by the strategy of tandem reaction. In the reaction, the unsaturated hydrocarbons react with transition-metal catalysts and organometallic reagents to generate new organometallic reagents in situ first, and then complete carboxylation with CO 2. Common organometallic reagents such as organozinc reagents, Grignard reagents, and organoaluminum reagents can all achieve this kind of carboxylation reaction. In this review, reactions are divided according to the type of unsaturated hydrocarbons, and each type can also be divided into hydrocarboxylation and carbocarboxylation. This review would introduce reaction according to this classification.
Yaping Yi , Wei Hang , Chanjuan Xi . Recent Advance of Transition-Metal-Catalyzed Tandem Carboxylation Reaction of Unsaturated Hydrocarbons with Organometallic Reagents and CO2[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 80 -93 . DOI: 10.6023/cjoc202007013
[1] | Wuebbles D.J.; Easterling D.R.; Hayhoe K.; Knutson T.; Kopp R.E.; Kossin J.P.; Kunkel K.E.; LeGrande A.N.; Mears C.; Sweet W.V.; Taylor P.C.; Vose R.S.; Wehner M.F. InClimate Science Special Report :Fourth National Climate Assessment, Vol. I , 2017, pp. 35~72. |
[2] | (a) Tortajada A.; Juliá-Hernández F.; Börjesson M.; Moragas T.; Martin R. Angew. Chem, Int. Ed. 2018, 57, 15948. |
[2] | (b) Wang S.; Xi C. Chem. Soc. Rev. 2019, 48, 382. |
[2] | (c) Wang Q.; Sun J. Chem. Bull. 2018, 81, 312. |
[2] | ( 王强, 孙京, 化学通报, 2018, 81, 312.). |
[2] | (d) Zhang Y.; Cen J.; Xiong W.; Qi Z.; Jiang H. Prog. Chem. 2018, 30, 547. |
[2] | ( 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.). |
[2] | (e) Zhang Z.; Gong L.; Zhou X.-Y.; Yan S.-S.; Li J.; Yu D.-G. Acta Chim. Sinica 2019, 77, 783. |
[2] | ( 张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.). |
[2] | (f) Chen K.-H.; Li H.-R.; He L.-N. Chin. J. Org. Chem. 2020, 40, 2195. |
[2] | ( 陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195 . ). |
[2] | (g) Zhou C.; Li M.; Yu J.-T.; Sun S.; Cheng J. Chin. J. Org. Chem. 2020, 40, 2221. |
[2] | ( 周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.). |
[3] | (a) Yan S.-S.; Fu Q.; Liao L.-L.; Sun G.-Q.; Ye J.-H.; Gong L.; Bo-Xue Y.-Z.; Yu D.-G. Coord. Chem. Rev. 2018, 374, 439. |
[3] | (b) Zhang L.; Hou Z. Curr. Opin. Green Sust. Chem. 2017, 3, 17. |
[4] | Lapidus A.L.; Pirozhkov S.D.; Koryakin A.A. Russ. Chem. Bull. 1978, 27, 2513. |
[5] | Cohen S.A.; Bercaw J.E. Organometallics 1985, 4, 1006. |
[6] | Alt H.G.; Denner C.E. J. Organomet. Chem. 1990, 390, 53. |
[7] | Hoberg H.; Schaefer D. J. Organomet. Chem. 1982, 236, C28. |
[8] | Hoberg H.; Schaefer D. J. Organomet. Chem. 1 983, 251, C51. |
[9] | Williams C.M.; Johnson J.B.; Rovis T. J. Am. Chem. Soc. 2008, 130, 14936. |
[10] | Shirakawa E.; Ikeda D.; Masui S.; Yoshida M.; Hayashi T. J. Am. Chem. Soc. 2012, 134, 272. |
[11] | Greenhalgh M.D.; Thomas S.P. J. Am. Chem. Soc. 2012, 134, 11900. |
[12] | Shao P.; Wang S.; Chen C.; Xi C. Org. Lett. 2 016, 18, 2050. |
[13] | Finkbeiner H.L.; Cooper G.D. J. Org. Chem. 1962, 27, 3395. |
[14] | Sato F. J. Organomet. Chem. 1985, 285, 53. |
[15] | Shao P.; Wang S.; Chen C.; Xi C. Chem. Commun. 2015, 51, 6640. |
[16] | Hoveyda A.H.; Xu Z. J. Am. Chem. Soc. 1991, 113, 5079. |
[17] | Takahashi T.; Seki T.; Nitto Y.; Saburi M.; Rousset C.J.; Negishi E. J. Am. Chem. Soc. 1991, 113, 6266. |
[18] | (a) Takaya J.; Iwasawa N. J. Am. Chem. Soc. 2008, 130, 15254. |
[18] | (b) Tayaka J.; Sasano K.; Iwasawa N. Org. Lett. 2011, 13, 1698. |
[19] | Li S.; Miao B.; Yuan W.; Ma S. Org. Lett. 2013, 15, 977. |
[20] | Gholap S.S.; Takimoto M.; Hou Z. Chem.-Eur. J. 2016, 22, 8547. |
[21] | Nii S.; Terao J.; Kambe N. J. Org. Chem. 2000, 65, 5291. |
[22] | Nii S.; Terao J.; Kambe N. J. Org. Chem. 2004, 69, 573. |
[23] | Hang W.; Zou S.; Xi C. ChemCatChem 2019, 11, 3814. |
[24] | Li S.; Yuan W.; Ma S. Angew. Chem., Int. Ed. 2011, 50, 2578. |
[25] | Li S.; Ma S. Chem. Asian J. 2012, 7, 2411. |
[26] | Miao B.; Zheng Y.; Wu P.; Li S.; Ma S. Adv. Synth. Catal. 2017, 359, 1691. |
[27] | Cao T.; Ma S. Org. Lett. 2016, 18, 1510. |
[28] | Santhoshkumar R.; Hong Y.-C.; Luo C.-Z.; Wu Y.-C.; Hung C.-H.; Hwang K.-Y.; Tu A.-P.; Cheng, C-H. ChemCatChem 2016, 8, 2210. |
[29] | Shao P.; Wang S.; Du G.; Xi C. RSC Adv. 2017, 7, 3534. |
[30] | Li S.; Ma S. Org. Lett. 2011, 13, 6046. |
[31] | Takimoto M.; Hou Z. Chem.-Eur. J. 2013, 19, 11439. |
[32] | Wang S.; Xi C. Org. Lett. 2018, 20, 4131. |
[33] | Xue F.; Zhao J.; Hor T.S. Chem. Commun. 2013, 49, 10121. |
[34] | Xue F.; Zhao J.; Hor T.S.; Hayashi T. J. Am. Chem. Soc. 2015, 137, 3189. |
[35] | Wu B.; Chopra R.; Yoshikai N. Org. Lett. 2 015, 17, 5666. |
[36] | Cao T.; Yang Z.; Ma S. ACS Catal. 2017, 7, 4504. |
[37] | Diccianni J.B.; Heitmann T.; Diao T. J. Org. Chem. 2017, 82, 6895. |
/
〈 |
|
〉 |