Review

Recent Progress in Catalytic Asymmetric Alkynylation of Imines

  • Shurui Zhou ,
  • Kaige Wen ,
  • Xingping Zeng
Expand
  • 1 Laboratory of Small Fuctional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022

Received date: 2020-07-16

  Online published: 2020-09-09

Supported by

the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University(KLFS-KF-201603); the Foundation of Jiangxi Educational Committee(170223)

Abstract

Chiral propargyl amines are key intermediates in the asymmetric total synthesis of natural products and bioactive compounds. The asymmetric alkynylation of imine and its analogues can provide a highly efficient and enantioselective synthetic route for these chiral building blocks. In addition, through rational substrate and reaction design, the asymmetric alkynylation of imines can be used as the starting point of a series of cascade reactions to synthesize a variety of novel nitrogen-heterocyclic compounds. Therefore, highly efficient and enantioselective alkynylation of imines and their analogues has attracted the continuous attention of synthetic chemists. According to the types of substrate, the research progress in asymmetric alkynylation of imines and their analogues over the past decade is introduced, which is divided into two parts: asymmetric alkynylation of aldimines and asymmetric alkynylation of ketoimines. The reaction mechanism and their advantages and disadvantages, together their synthetic applications will be briefly introduced, hoping to provide some useful inspiration for expanding the application of this reaction in synthesis.

Cite this article

Shurui Zhou , Kaige Wen , Xingping Zeng . Recent Progress in Catalytic Asymmetric Alkynylation of Imines[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 471 -489 . DOI: 10.6023/cjoc202007043

References

[1]
Lauder K.; Toscani A.; Scalacci N.; Castagnolo D. Chem. Rev. 2017, 117, 14091.
[2]
(a) Lu G.; Li Y.-M.; Li X.-S.; Chan A. S. C.Coord. Chem. Rev. 2005, 249, 1736.
[2]
(b) Blay G.; Monleón A.; Pedro J.R. Curr. Org. Chem. 2009, 13, 1498.
[2]
(c) Bian Q.; Zhong J.; Hou S.; Wang M. Chin. J. Org. Chem. 2010, 30, 1261. (in Chinese)
[2]
边庆花, 钟江春, 侯士聪, 王敏, 有机化学, 2010, 30, 1261.).
[2]
(d) Cheng M.; Li B.-G.Chin. Synth. Chem. 2012, 20, 1. (in Chinese)
[2]
成明, 李伯刚, 合成化学, 2012, 20, 1.).
[2]
(e) Bisai V.; Singh V.K. Tetrahedron Lett. 2016, 57, 4771.
[3]
Yan W.; Li P.; Feng J.; Wang D.; Zhu S.; Jiang X.; Wang R. Tetrahedron : Asymmetry 2010, 21, 2037.
[4]
Blay G.; Ceballos E.; Monleon A.; Pedro J.R. Tetrahedron 2012, 68, 2128.
[5]
(a) Liu T.-L.; Zhang H.-X.; Zheng Y.; Yao Q.; Ma J.-A. Chem. Commun. 2012, 48, 12234.
[5]
(b) Yang Z.-Y.; Liu T.-L.; Zheng Y.; Li S.; Ma J.-A. Eur. J. Org. Chem. 2015, 3905.
[6]
Blay G.; Brines A.; Monlen A.; Pedro J.R. Chem.-Eur. J. 2012, 18, 2440.
[7]
Xie Z.; Liu X.; Liu L. Org. Lett. 2016, 18, 2982.
[8]
Luzung M.R.; Dixon D.D.; Ortiz A.; Guerrero C.A.; Ayers S.; Ho J.; Schmidt M.A.; Strotman N.A.; Eastgate M.D. J. Org. Chem. 2017, 82, 10715.
[9]
(a) Campbell M.J.; Toste F.D. Chem. Sci. 2011, 2, 1369.
[9]
(b) Ranjan A.; Mandal A.; Yerande S.G.; Dethe D.H. Chem. Commun. 2015, 51, 14215.
[10]
Hashimoto T.; Omote M.; Maruoka K. Angew. Chem., Int. Ed. 2011, 50, 8952.
[11]
Pappoppula M.; Cardoso F. S. P.; Garrett B.O.; Aaron A. Angew. Chem., Int. Ed. 2015, 54, 15202.
[12]
Kou X.; Zhao Q.; Guan Z.-H. Org. Chem. Front. 2020, 7, 838.
[13]
Ren Y.-Y.; Wang Y.-Q.; Liu S. J. Org. Chem. 2014, 79, 11759.
[14]
Munck L.D.; Monleón A.; Vila C.; Mu?oz M.C.; Pedro J.R. Org. Biomol. Chem. 2015, 13, 7393.
[15]
Munck L.D.; Monleón A.; Vila C.; Pedro J.R. Adv. Synth. Catal. 2017, 359, 1582.
[16]
Yu J.; Li Z.; Jia K.; Jiang Z.; Liu M.; Su W. Tetrahedron Lett. 2013, 54, 2006.
[17]
Sun S.; Li C.; Floreancig P.E.; Lou H.; Liu L. Org. Lett. 2015, 17, 1684.
[18]
Sun S.; Liu L. Synthesis 2016, 48, 2627.
[19]
Perepichka I.; Kundu S.; Hearne Z.; Li C.-J. Org. Biomol. Chem. 2015, 13, 447.
[20]
Huang T.; Liu X.; Lang J.; Xu J.; Lin L.; Feng X. ACS Catal. 2017, 7, 5654.
[21]
(a) Wei C.; Li C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
[21]
Wei C.; Mague J.T.; Li C.-J. Proc. Natl. Acad. Sci. U.S. A. 2004, 101, 5749.
[21]
Selected reviews:.
[21]
(c) Peshkov V.A.; Pereshivko O.P.; Van der Eycken, E.V.Chem. Soc. Rev. 2012, 41, 3790.
[21]
(d) Rokade B.V.; Barker J.; Guiry P.J. Chem. Soc. Rev. 2019, 48, 4766.
[21]
(e) Mo J.-N.; Su J.; Zhao J. Molecules 2019, 24, 1216.
[21]
(f) Jesin I.; Nandi G.C. Eur. J. Org. Chem. 2019, 2704.
[22]
Bisai V.; Suneja A.; Singh V.K. Angew. Chem., Int. Ed. 2014, 53, 10737.
[23]
Das B.G.; Shah S.; Singh V.K. Org. Lett. 2019, 21, 4981.
[24]
Dhanasekaran S.; Kannaujiya V.K.; Biswas R.G.; Singh V.K. J. Org. Chem. 2019, 84, 3275.
[25]
Li Z.; Jiang Z.; Su W. Green Chem. 2015, 17, 2330.
[26]
Gao X.-T.; Gan C.-C.; Liu S.-Y.; Zhou F.; Wu H.-H.; Zhou J. ACS Catal. 2017, 7, 8588.
[27]
(a) Nakamura S.; Hyodo K.; Nakamura Y.; Shibata N.; Toru T. Adv. Synth. Catal. 2008, 350, 1443.
[27]
(b) Liu H.; Du D.-M. Adv. Synth. Catal. 2009, 351, 489.
[28]
Nakamura S.; Ohara M.; Nakamura Y.; Shibata N.; Toru T. Chem.-Eur. J. 2010, 16, 2360.
[29]
Ohara M.; Hara Y.; Ohnuki T.; Nakamura S. Chem.-Eur. J. 2014, 20, 8848.
[30]
Kn?pfel T.E.; Aschwanden P.; Ichikawa T.; Watanabe T.; Carreira E.M. Angew. Chem., Int. Ed. 2004, 43, 5971.
[31]
Huang X.; Ma S. Acc. Chem. Res. 2019, 52, 1301.
[32]
(a) Ye J.; Li S.; Chen B.; Fan W.; Kuang J.; Liu J.; Liu Y.; Miao B.; Wan B.; Wang Y.; Xie X.; Yu Q.; Yuan W.; Ma S. Org. Lett. 2012, 14, 1346.
[32]
(b) Liu Q.; Cao T.; Han Y.; Jiang X.; Tang Y.; Zhai Y.; Ma S. Synlett 2019, 30, 477.
[33]
Fan W.; Ma S. Chem. Commun. 2013, 49, 10175.
[34]
Fan W.; Yuan W.; Ma S. Nat. Commun. 2014, 5, 1.
[35]
(a) Lin W.; Cao T.; Fan W.; Han Y.; Kuang J.; Luo H.; Miao B.; Tang X.; Yu Q.; Yuan W.; Zhang J.; Zhu C.; Ma S. Angew. Chem., Int. Ed. 2014, 53, 277.
[35]
(b) Lin W.; Ma S. Org. Chem. Front. 2014, 1, 338.
[35]
(c) Lin W.; Ma S. Org. Chem. Front. 2017, 4, 958.
[36]
Zhou S.; Tong R. Org. Lett. 2017, 19, 1594.
[37]
(a) Cardoso F. S. P.; Abboud K.A.; Aponick A. J. Am. Chem. Soc. 2013, 135, 14548.
[37]
(b) Paioti P. H. S.; Abboud K.A.; Aponick A. J. Am. Chem. Soc. 2016, 138, 2150.
[38]
(a) Paioti P. H. S.; Abboud K.A.; Aponick A. ACS Catal. 2017, 7, 2133.
[38]
(b) Rokade B.V.; Guiry P.J. ACS Catal. 2017, 7, 2334.
[38]
(c) Rokade B.V.; Guiry P.J. J. Org. Chem. 2019, 84, 5763.
[39]
(a) Min C.; Mittal N.; Sun D.X.; Seidel D. Angew. Chem., Int. Ed. 2013, 52, 14084.
[39]
(b) Mittal N.; Sun D.X.; Seidel D. Org. Lett. 2014, 16, 1012.
[40]
Zhao C.; Seidel D. J. Am. Chem. Soc. 2015, 137, 4650.
[41]
Huang G.; Yang J.; Zhang X. Chem. Commun. 2011, 47, 5587.
[42]
Huang G.; Yin Z.; Zhang X. Chem.-Eur. J. 2013, 19, 11992.
[43]
Morisaki K.; Sawa M.; Nomaguchi J.-Y.; Morimoto H.; Takeuchi Y.; Mashima K.; Ohshima T. Chem.-Eur. J. 2013, 19, 8417.
[44]
Morisaki K.; Sawa M.; Yonesaki R.; Morimoto H.; Mashima K.; Ohshima T. J. Am. Chem. Soc. 2016, 138, 6194.
[45]
Yin L.; Otsuka Y.; Takada H.; Mouri S.; Yazaki R.; Kumagai N.; Shibasaki M. Org. Lett. 2013, 698.
[46]
Takada H.; Kumagai N.; Shibasaki M. Org. Lett. 2015, 17, 4762.
[47]
Chen Q.; Xie L.; Li Z.; Tang Y.; Zhao P.; Lin L.; Feng X.; Liu X. Chem. Commun. 2018, 54, 678.
[48]
Dasgupta S.; Liu J.; Shoffler C.A.; Yap G. P. A.; Watson M.P. Org. Lett. 2016, 18, 6006.
[49]
Zhang F.-G.; Ma H.; Nie J.; Zheng Y.; Gao Q.; Ma J.-A. Adv. Synth. Catal. 2012, 354, 1422.
[50]
Zhang Y.; Nie J.; Zhang F.-G.; Ma J.-A. J. Fluorine Chem. 2018, 208, 1.
[51]
Ling Z.; Singh S.; Xie F.; Wu L.; Zhang W. Chem. Commun. 2017, 53, 5364.
[52]
Liu R.-R.; Zhu L.; Hu J.-P.; Lu C.-J.; Gao J.-R.; Lan Y.; Jia Y.-X. Chem. Commun. 2017, 53, 5890.
Outlines

/