Article

Ruthenium-Catalyzed Oxygenative Transformation of Terminal Propargyl Alcohols to Metheyleneketenes via Allenylidene Intermedia-tes: Synthesis ofα,β-Unsaturated Carboxylic Acid Derivatives

  • Xinyu Wang ,
  • Qihuan Li ,
  • Tingbin Wen
Expand
  • a Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005

Received date: 2020-08-24

  Revised date: 2020-09-07

  Online published: 2020-09-09

Supported by

the National Natural Science Foundation of China(21971215)

Abstract

A ruthenium-catalyzed oxygenative transformation of terminal propargyl alcohols to metheyleneketenes via allenylidene intermediates has been developed for the synthesis of a variety of α, β-unsaturated carboxylic acid derivatives. Mechanistic study experiments disclosed that oxygen transfer from pyridine- N-oxide to ruthenium allenylidene generated from the reaction of catalyst CpRuCl(PPh3)2/NaBPh4 with terminal propargyl alcohol resulted in the formation of reactive methyleneketene intermediate, which was trapped into nucleophilic addition reactions to afford α, β-unsaturated product. This reaction offers an attractive complementary strategy to the traditional approach for the synthesis of this class of unsaturated compounds, but in a distinct mechanism, which provides a novel method for the transformation of propargylic alcohols. The metal allenylidene-to-methyleneketene transformation also represents a new mechanistic modality for metal allenylidene-mediated catalysis.

Cite this article

Xinyu Wang , Qihuan Li , Tingbin Wen . Ruthenium-Catalyzed Oxygenative Transformation of Terminal Propargyl Alcohols to Metheyleneketenes via Allenylidene Intermedia-tes: Synthesis ofα,β-Unsaturated Carboxylic Acid Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 284 -296 . DOI: 10.6023/cjoc202008044

References

[1]
For selected reviews on the organometallic properties of vinylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1991, 91, 197.
[1]
(b) Puerta M.C.; Valerga P. Coord. Chem. Rev. 1999, 193 ~195, 977.
[1]
(c) Wakatsuki Y. J. Organomet. Chem. 2004, 689, 4092.
[1]
(d) Qiu Z.; Xie Z. Sci. China, Ser. B :Chem. 2009, 52, 1544.
[1]
(e) Lynam J.M. Chem. -Eur. J. 2010, 16, 8238.
[1]
(f) Herndon J.W. Coord. Chem. Rev. 2018, 356, 1.
[2]
For selected reviews on the organometallic properties of allenylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1998, 98, 2797.
[2]
(b) Selegue J.P. Coord. Chem. Rev. 2004, 248, 1543.
[2]
(c) Rigaut S.; Touchard D.; Dixneuf P.H. Coord. Chem. Rev. 2004, 248, 1585.
[2]
(d) Che C.; Ho C.; Huang J. Coord. Chem. Rev. 2007, 251, 2145.
[2]
(e) Cadierno V.; Gimeno J. Chem. Rev. 2009, 109, 3512.
[2]
(f) Herndon J.W. Coord. Chem. Rev. 2019, 401, 213051.
[3]
For selected reviews on metal vinylidenes and allenylidenes in catalysis, see: (a) Bruneau C.; Dixneuf P. H. Acc. Chem. Res. 1999, 32, 311.
[3]
(b) Trost B.M.; Toste F.D.; Pinkerton A.B. Chem. Rev. 2001, 101, 2067.
[3]
(c) Miki K.; Uemura S.; Ohe K. Chem. Lett. 2005, 34, 1068.
[3]
(d) Varela J.A.; Saá C. Chem. -Eur. J. 2006, 12, 6450.
[3]
(e) Trost B.M.; McClory A. Chem. -Asian J. 2008, 3, 164.
[3]
Bruneau C.; Dixneuf P.H. Metal Vinylidenes and Allenylidenes in Catalysis :From Reactivity to Applications in Synthesis, WILEY-VCH, Weinheim, Germany, 2008.
[3]
Varela J.A.; Gonza?lez-Rodríguez C.; Saa? C. Ruthenium in Catalysis, InTopics in Organometallic Chemistry Series 48, Eds.: Bruneau, C.; Dixneuf, P.H., Springer, Switzerland, 2014, pp.237~288.
[3]
(h) Roh S.W.; Choi K.; Lee C. Chem. Rev. 2019, 119, 4293.
[3]
Gagosz F. Synthesis -Stuttgart 2019, 51, 1087.
[3]
(j) Jin J.-T.; Tao X.-C.; Qian Y.-L. Chin. J. Org. Chem. 2000, 20, 470. (in Chinese)
[3]
( 金军挺, 陶晓春, 钱延龙, 有机化学, 2000, 20, 470.).
[4]
Coletti C.; Marrone A.; Re N. Acc. Chem. Res. 20 12, 45, 139.
[5]
(a) Hyder I.; Jime?nez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2011, 30, 726.
[5]
(b) Talavera M.; Bolaño S.; Bravo J.; Castro J.; Garcı?a-Fontán S.; Hermida-Ramón J.M. Organometallics 2013, 32, 4402.
[5]
(c) Serrano-Ruiz M.; Lidrissi C.; Mañas S.; Peruzzini M.; Romerosa A. J. Organomet. Chem. 2014, 751, 654.
[5]
(d) Jiménez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2016, 35, 388 and references therein.
[6]
(a) Cadierno V.; Gamasa M.P.; Gimeno J.; Perez-Carreno E.; Ienco A. Organometallics 1998, 17, 5216.
[6]
(b) Esteruelas M.A.; Gomez A.V.; Lopez A.M.; Onate E.; Ruiz N. Organometallics 1999, 18, 1606.
[6]
(c) Cadierno V.; Conejero S.; Gamasa M.P.; Gimeno J.; Falvello L.R.; Llusar R.M. Organometallics 2002, 21, 3716.
[6]
(d) Saget T.; Cramer N. Angew. Chem., Int. Ed. 2010, 49, 8962.
[6]
(e) Queensen M.J.; Rath N.P.; Bauer E.B. Organometallics 2014, 33, 5052.
[6]
(f) García-de la Arada, I.; Díez, J.; Gamasa, M.P.; Lastra, E. J. Organomet. Chem. 2015, 797, 101.
[7]
(a) Bustelo E.; Jimenez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2006, 25, 4019.
[7]
(b) Pino-Chamorro J.A.; Bustelo E.; Puerta M.C.; Valerga P. Organometallics 2009, 28, 1546.
[8]
(a) Trost B.M.; Frederiksen M.U.; Rudd M.T. Angew. Chem., Int. Ed. 2005, 44, 6630.
[8]
(b) Bruneau C.; Dixneuf P.H. Angew. Chem., Int. Ed. 2006, 45, 2176.
[8]
(c) Liu R.-S. Synlett 2008, 801.
[9]
(a) Nishibayashi Y.; Uemura S. Curr. Org. Chem 2006, 10, 135.
[9]
Nishibayashi Y. Synthesis 2012, 489.
[9]
(c) Sakata K.; Nishibayashi Y. Catal. Sci. Technol. 2018, 8, 12.
[10]
Zhang D.-Y.; Hu X.-P. Tetrahedron Lett. 2015, 56, 283.
[11]
Trost B.M.; Flygare J.A. J. Am. Chem. Soc. 1992, 114, 5476.
[12]
(a) Bustelo E.; Dixneuf P.H. Adv. Synth. Catal. 2005, 347, 393.
[12]
(b) Ma H.W.; Lin Y.C.; Huang S.L. Org. Lett. 2012, 14, 3846.
[13]
(a) Yeh K.L.; Liu B.; Lo C.Y.; Huang H.L.; Liu R.S. J. Am. Chem. Soc. 2002, 124, 6510.
[13]
(b) Yeh K.L.; Liu B.; Lai Y.T.; Li C.W.; Liu R.S. J. Org. Chem. 2004, 69, 4692.
[13]
(c) Shen H.C.; Su H.L.; Hsueh Y.C.; Liu R.S. Organometallics 2004, 23, 4332.
[13]
Propargylic reduction of propargylic alcohols with 2-Propanol via similar hydrogen transfer was reported:.
[13]
(d) Yuki M.; Miyake Y.; Nishibayashi Y. Organometallics 2010, 29, 5994.
[14]
Datta S.; Chang C.L.; Yeh K.L.; Liu R.S. J. Am. Chem. Soc. 2003, 125, 9294.
[15]
(a) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J. Chem. Commun. 2004, 2716.
[15]
(b) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J.; Nebra N. Adv. Synth. Catal. 2006, 348, 2125.
[15]
(c) Cadierno V.; García-Garrido S.E.; Gimeno J. Adv. Synth. Catal. 2006, 348, 101.
[15]
(d) Onodera G.; Matsumoto H.; Nishibayashi Y.; Uemura Y. Organometallics 2005, 24, 5799.
[16]
(a) Tidwell T.T. Angew. Chem., Int. Ed. 2005, 44, 5778.
[16]
(b) Allen A.D.; Tidwell T.T. Eur. J. Org. Chem. 2012, 2012, 1081.
[16]
(c) Allen A.D.; Tidwell T.T. Chem. Rev. 2013, 113, 7287.
[17]
(a) Madhushaw R.J.; Lin M.Y.; Abu Sohel S.M.; Liu R.S. J. Am. Chem. Soc. 2004, 126, 6895.
[17]
(b) Lin M.Y.; Madhushaw R.J.; Liu R.S. J. Org. Chem. 2004, 69, 7700.
[17]
(c) Lin M.Y.; Maddirala S.J.; Liu R.S. Org. Lett. 2005, 7, 1745.
[17]
(d) Pati K.; Liu R.S. Chem. Commun. 2009, 5233.
[17]
(e) Kim I.; Lee C. Angew. Chem., Int. Ed. 2013, 52, 10023.
[17]
(f) Kim I.; Roh S.W.; Lee D.G.; Lee C. Org. Lett. 2014, 16, 2482.
[17]
(g) Wang Y.; Zheng Z.; Zhang L. Angew. Chem., Int. Ed. 2014, 53, 9572.
[17]
(h) Zheng R.; Wang Y.; Zhang L. Tetrahedron Lett. 2015, 56, 3144.
[17]
(i) Zeng H.; Li C.J. Angew. Chem., Int. Ed. 2014, 53, 13862.
[17]
(j) Yu C.; Ma X.; Chen B.; Tang B.; Paton R.S.; Zhang G. Eur. J. Org. Chem. 2017, 2017, 1561.
[17]
(k) Rong M.G.; Qin T.Z.; Liu X.R.; Wang H.F.; Zi W. Org. Lett. 2018, 20, 6289.
[17]
(l) Zhang W.W.; Gao T.T.; Xu L.J.; Li B.J. Org. Lett. 2018, 20, 6534.
[17]
(m) Álvarez-Pérez A.; Esteruelas M.A.; Izquierdo S.; Varela J.A.; Saá C. Org. Lett. 2019, 21, 5346.
[17]
For a recent review, see:.
[17]
Álvarez-Pérez A.; Varela J.A.; Saá C. Synthesis 2020, 52, 2639.
[18]
Brown R.F.C.; Eastwood F.W. The Chemistry of Ketenes, Allenes and Related Compounds, John Wiley& Sons Ltd, New York , 1980, Chapter 19.
[19]
(a) Hart H.; Dean D.L.; Buchanan D.N. J. Am. Chem. Soc. 1973, 95, 6294.
[19]
(b) Chapman O.L.; Chang C.-C.; Hole J.; Rosenquist N.R.; Tomioka H. J. Am. Chem. Soc. 1975, 97, 22, 6586.
[19]
(c) Meng J.B.; Shen M.Q.; Wang X.H.; Gao Z.H.; Wang H.G.; Matsuura T. Chin. Sci. Bull. 1991, 36, 2056.
[19]
(d) Pietri N.; Monnier M.; Aycard J.P. J. Org. Chem. 1998, 63, 2462.
[19]
(e) Yang C.; Wu W.; Liu K.; Wang H.; Su H. Sci. China :Chem. 2012, 55, 359.
[20]
(a) Brown R.F.C.; Jones C.M. Aust. J. Chem. 1980, 33, 1817.
[20]
(b) Brown R.F.C.; Eastwood F.W.; Chaichit N.; Gatehouse B.M.; Pfeiffer J.M.; Woodroffe D. Aust. J. Chem. 1981, 34, 1467.
[20]
(c) Besida J.; Brown R.F.C. Aust. J. Chem. 1982, 35, 1385.
[20]
(d) Besida J.; Brown R.F.C.; Colmanet S.; Leach D.N. Aust. J. Chem. 1982, 35, 1373.
[20]
(e) Pommelet J.C.; Dhimane H.; Chuche J.; Celerier J.P.; Haddad M.; Lhommet G. J. Org. Chem. 1988, 53, 5680.
[20]
(f) Wentrup C.; Lorencak P. J. Am. Chem. Soc. 1988, 110, 1880.
[20]
(g) Brahms J.C.; Dailey W.P. J. Am. Chem. Soc. 1989, 111, 8940.
[20]
(h) Bencheikh A.; Pommelet J.C.; Chuche J. J. Chem. Soc., Chem. Commun. 1990, 615.
[20]
(i) Chuburu F.; Lacombe S.; Pfisterguillouzo G.; Bencheik A.; Chuche J.; Pommelet J.C. J. Am. Chem. Soc. 1991, 113, 1954.
[20]
(j) Fulloon B.E.; Wentrup C. J. Org. Chem. 1996, 61, 1363.
[20]
Gaber A.A.M.; McNab H. Synthesis -Stuttgart 2001, 2059.
[20]
(l) Halton B.; Dixon G.M.; Jones C.S.; Parkin C.T.; Veedu R.N.; Bornemann H.; Wentrup C. Org. Lett. 2005, 7, 949.
[20]
(m) Andersen H.G.; Wentrup C. Aust. J. Chem. 2012, 65 .
[21]
(a) Birum G.H.; Matthews C.N. J. Am. Chem. Soc. 1968, 90, 14, 3842.
[21]
(b) Taylor G.A. Chem. Commun. (London )1968, 1314.
[21]
(c) Taylor G.A. J. Chem. Soc. 1969, 1755.
[21]
(c) Masters A.P.; Sorensen T.S.; Tran P.M. Can. J. Chem. 1987, 65, 1499.
[22]
Cai T.; Yang Y.; Zhang L.; Wen T. Chin. J. Org. Chem. 2018, 38, 2017. (in Chinese)
[22]
( 蔡涛, 杨玉, 张丽, 温庭斌, 有机化学, 2018, 38, 2017.).
[23]
For catalytic nitrogen tranfer to metal vinylidenes with hydrazines for nitrile synthesis, see: (a) Fukumoto Y.; Dohi T.; Masaoka H.; Chatani N.; Murai S. Organometallics 2002, 21, 3845.
[23]
(b) Fukumoto Y.; Tamura Y.; Iyori Y.; Chatani N. J. Org. Chem. 2016, 81, 3161.
[23]
For stoichiometrc nitrogen tranfer to metal vinylidenes with hydrazines to give nitrile complexes, see: (c) Alt H.G.; Engelhardt H.E.; Steinlein E.; Rogers D. J. Organomet. Chem. 1987, 344, 321.
[23]
(d) Barrett A.G.M.; Carpenter N.E.; Sabat M. J. Organomet. Chem. 1988, 352, C8.
[23]
(e) Albertin G.; Antoniutti S.; Bortoluzzi M.; Botter A.; Castro J. Dalton Trans. 201 5, 44, 3439.
[24]
(a) Arshad L.; Jantan I.; Bukhari S.N.; Haque M.A. Front Pharmacol 2017, 8, 22.
[24]
(b) Hossain M.; Das U.; Dimmock J.R. Eur. J. Med. Chem. 2019, 183, 111687.
[24]
(c) Zhang S.; Neumann H.; Beller M. Chem. Soc. Rev. 2020, 49, 3187.
[25]
(a) Reichl K.D.; Dunn N.L.; Fastuca N.J.; Radosevich A.T. J. Am. Chem. Soc. 2015, 137, 5292.
[25]
(b) Meng L.K.; Kamada Y.; Muto K.; Yamaguchi J.; Itami K. Angew. Chem., Int. Ed. 2013, 52, 10048.
[25]
(c) Liu L.; Lu H.; Wang H.; Yang C.; Zhang X.; Zhang-Negrerie D.; Du Y.F.; Zhao K. Org. Lett. 2013, 15, 2906.
[25]
(d) Li Y.J.; Yang Q.; Yang L.Q.; Lei N.; Zheng K. Chem. Commun. 2019, 55, 4981.
[26]
Bruce M.I.; Low P.J.; Tiekink E.R.T. J. Organomet. Chem. 1999, 572, 3.
[27]
Following Saá’s conditions for the oxidative amidation of alkynes(see Ref.[17m]),1 equiv. of NaPF6 was used. The PF6 anion is prone to dissociate into PF5 and F at elevated temperature and the residual water presented in the solution may cause further hydrolysis of the resulting PF5 species to form phosphate. See: (a) Odedra A.; Datta S.; Liu R. S. J. Org. Chem. 2007, 72, 3289.
[27]
(b) Krossing I.; Raabe I. Chem. -Eur. J. 2004, 10, 5017.
[27]
(c) Krossing I.; Raabe I. Angew. Chem., Int. Ed. 2004, 43, 2066.
[28]
The DCE solvent may undergo dissociation to eliminate hydrogen chloride after prolonged heating. See: (a) Ho, M. L.; Flynn, A. B.; Ogilvie, W. W.J. Org. Chem. 2007, 72, 977.
[28]
(b) He W.; Xie L.; Xu Y.; Xiang J.; Zhang L. Org. Biomol. Chem. 2012, 10, 3168.
[28]
(c) Qian G.; Hong X.; Liu B.; Mao H.; Xu B. Org. Lett. 2014, 16, 5294.
[29]
(a) Pavlik S.; Mereiter K.; Puchberger M.; Kirchner K. J. Organomet. Chem. 2005, 690, 5497.
[29]
(b) Hartmann S.; Winter R.F.; Brunner B.M.; Sarkar B.; Knodler A.; Hartenbach I. Eur. J. Inorg. Chem. 2003, 876.
[29]
(c) Chan W.C.; Lau C.P.; Chen Y.Z.; Fang Y.Q.; Ng S.M.; Jia G.C. Organometallics 1997, 16, 34.
[29]
(d) Buriez B.; Burns I.D.; Hill A.F.; White A.J.P.; Williams D.J.; Wilton-Ely J.D.E. T. Organometallics 1999, 18, 1504.
[30]
(a) Picquet M.; Bruneau C.; Dixneuf P.H. Chem. Commun. 1998, 2249.
[30]
(b) Furstner A.; Liebl M.; Lehmann C.W.; Picquet M.; Kunz R.; Bruneau C.; Touchard D.; Dixneuf P.H. Chem. -Eur. J. 2000, 6, 1847.
[31]
Selegue J.P. J. Am. Chem. Soc. 1983, 105, 5921.
[32]
(a) Lukehart C.M.; Zelie J.V. J. Organomet. Chem. 1975, 97, 421.
[32]
(b) Wulff W.D.; Yang D.C. J. Am. Chem. Soc. 1983, 105, 6726.
[32]
(c) Dötz K.H. Angew. Chem., Int. Ed. 1984, 23, 587.
[32]
(d) Barrett A.G.M.; Mortier J.; Sabat M.; Sturgess M.A. Organometallics 1988, 7, 2553.
[32]
(e) Gibert M.; Ferrer M.; Lluch A.M.; Sánchez-Baeza F.; Messeguer A. J. Org. Chem. 1999, 64, 1591.
[32]
(f) Ruan W.; Shi C.; Sung H.H.Y.; Williams I.D.; Jia G. J. Organomet. Chem. 2019, 880, 7.
[33]
(a) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 1999, 121, 11680.
[33]
(b) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 2002, 124, 2528.
[33]
(c) Taduri B.P.; Sohel S.M.A.; Cheng H.M.; Lin G.Y.; Liu R.S. Chem. Commun. 2007, 2, 2530.
[34]
Bruce M.I.; Hameister C.; Swincer A.G.; Wallis R.C. Inorg. Synth. 1990, 28, 270.
[35]
Gluyas J.B.G.; Brown N.J.; Farmer J.D.; Low P.J. Aust. J. Chem. 2017, 70, 113.
[36]
Cai T.; Yang Y.; Li W.W.; Qin W.B.; Wen T.B. Chem. -Eur. J. 2018, 24, 1606.
[37]
Alcock N.W.; Burns I.D.; Claire K.S.; Hill A.F. Inorg. Chem. 1992, 31, 2906.
[38]
Boren B.C.; Narayan S.; Rasmussen L.K.; Zhang L.; Zhao H.T.; Lin Z.Y.; Jia G.C.; Fokin V.V. J. Am. Chem. Soc. 200 8, 130, 14900.
[39]
(a) Harada S.; Yano H.; Obora Y. ChemCatChem 2013, 5, 121.
[39]
(b) Han Y.P.; Song X.R.; Qiu Y.F.; Hao X.H.; Wang J.; Wu X.X.; Liu X.Y.; Liang Y.M. J. Org. Chem. 2015, 80, 9200.
[39]
(c) Groundwater P.W.; Garnett I.; Morton A.J.; Sharif T.; Coles S.J.; Hursthouse M.B.; Nyerges M.; Anderson R.J.; Bendell D.; McKillop A.; Zhang W. J. Chem. Soc., Perkin Trans. 1 2001, 2781.
[39]
(d) Ueda S.; Okada T.; Nagasawa H. Chem. Commun. 2010, 46, 2462.
[39]
(e) Reeves D.C.; Rodriguez S.; Lee H.; Haddad N.; Krishnamurthy D.; Senanayake C.H. Org. Lett. 2011, 13, 2495.
[39]
(f) Song C.E.; Jung D.U.; Choung S.Y.; Roh E.J.; Lee S.G. Angew. Chem., Int. Ed. 2 004, 43, 6183.
[39]
(g) Inamoto K.; Okawa H.; Taneda H.; Sato M.; Hirono Y.; Yonemoto M.; Kikkawa S.; Kondo Y. Chem. Commun. 2012, 48, 9771.
[39]
(h) Ito Y. Tetrahedron 2007, 63, 3108.
Outlines

/