Recent Developments of Reactions with C,N-Cyclic Azomethine Imines

  • Hua Tingbi ,
  • Yang Qingqing ,
  • Xiao Wengjing
Expand
  • a Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, Hubei 443002;
    b Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, hubei 443002;
    c Key Laboratory of Pesticide&Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079

Received date: 2020-06-30

  Revised date: 2020-09-04

  Online published: 2020-09-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 21702121), the Open Fund from Hubei Key Laboratory of Natural Products Research and Development (China Three Gorges University) (No. NPRD-2018010), the Research Fund for Excellent Dissertation of China Three Gorges University and the Programme of Introducing Talents of Discipline to Universities (111 Project, No. D20015).

Abstract

Among various 1,3-dipoles of cyclic azomethine imines, C,N-cyclic azomethine imines are the most widely used reagents in the construction of diverse tetrahydroisoquinoline derivatives. The developments of reactions with C,N-cyclic azomethine imines including [3+2], [3+3], [3+4], [5+1], [3+1] cycloaddition reactions and miscellaneous reactions are summarized. The properties of reactions, reaction processes and synthetic applications are discussed. Finally, the prospects of the reaction with this reagent are also proposed.

Cite this article

Hua Tingbi , Yang Qingqing , Xiao Wengjing . Recent Developments of Reactions with C,N-Cyclic Azomethine Imines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3559 -3595 . DOI: 10.6023/cjoc202006072

References

[1] (a) Liu, C. J.; Liu, D. Y.; Xiang, L. Acta Pharm. Sin. 2010, 45, 9.
(b) Blay, J.-Y. Eur. J. Clin. Med. Oncol. 2010, 2, 1.
(c) Vincenzi, B.; Napolitano, A.; Frezza, A. M.; Schiavon, G.; Santini, D.; Tonini, G. Pharmacogenomics 2010, 11, 865.
(d) Carter, N. J.; Keam, S. J. Drugs 2010, 70, 355.
[2] (a) Aune, G. J.; Furuta, T.; Pommier, Y. Anti-Cancer Drugs 2002, 13, 545.
(b) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
(c) Mujahidin, D.; Doye, S. Eur. J. Org. Chem. 2005, 2005, 2689.
(d) Bentley, K. W. Nat. Prod. Rep. 2006, 23, 444.
(e) Werner, F.; Blank, N.; Opatz, T. Eur. J. Org. Chem. 2007, 2007, 3911.
(f) Reddy, R. J.; Kawai, N.; Uenishi, J. J. Org. Chem. 2012, 77, 11101.
[3] (a) Sekine Y.; Brossi, A. J. Nat. Prod. 1990, 53, 533.
(b) Luk, L. Y. P.; Bunn, S.; Liscombe, D. K.; Facchini, P. J.; Tanner, M. E. Biochemistry 2007, 46, 10153.
(c) Minami, H.; Dubouzet, E.; Iwasa, K.; Sato, F. J. Biol. Chem. 2007, 282, 6274.
[4] (a) Chang, F.-R.; Wu, Y.-C. J. Nat. Prod. 2005, 68, 1056.
(b) Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y.-P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K.-H. Bioorg. Med. Chem. 2005, 13, 443.
[5] (a) Padwa, A.; Danca, M. D. Org. Lett. 2002, 4, 715.
(b) Simpkins, N. S.; Gill, C. D. Org. Lett. 2003, 5, 535
(c) Pérard-Viret, J.; Souquet, F.; Manisse, M.-L.; Royer, J. Tetrahedron Lett. 2010, 51, 96.
[6] (a) Yang, Z.; Liu, C.; Xiang, L.; Zheng, Y. Phytother. Res. 2009, 23, 1032.
[7] (a) Davis, F. A.; Mohanty, P. K. J. Org. Chem. 2002, 67, 1290.
(b) Benmekhbi, L.; Louafi, F.; Roisnel, T.; Hurvois, J.-P. J. Org. Chem. 2016, 81, 6721.
[8] (a) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 50, 7171.
(b) An, J.; Yang, Q.-Q.; Wang, Q.; Xiao, W.-J. Tetrahedron Lett. 2013, 54, 3834.
(c) Feng, Z.-J.; Xuan, J.; Xia, X.-D.; Ding, W.; Guo, W.; Chen, J.-R.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Org. Biomol. Chem. 2014, 12, 2037.
(d) Feng, Z.-J.; Zeng, T.-T.; Xuan, J.; Liu, Y.-H.; Lu, L.-Q.; Xiao, W.-J. Sci. China:Chem. 2016, 59, 171.
(e) Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52.
(f) Cheng, X.; Cao, X.; Zhou, S.-J.; Cai, B.-G.; He, X.-K.; Xuan, J. Adv. Synth. Catal. 2019, 361, 1230.
(g) Kaur, P.; Kumar, R. Chem. Heterocycl. Compd. 2020, 56, 422.
[9] (a) Wang, F.; Bai, D.-L. Chin. J. Org. Chem. 2006, 26, 9(in Chinese). (王峰, 白东鲁, 有机化学, 2006, 26, 9.)
(b) Qiu, G. Y. S.; Kuang, Y. Y.; Wu, J. Adv. Synth. Catal. 2014, 356, 3483.
(c) Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.
(d) Li, Z. Ph.D. Dissertation, China Agricultural University, Beijing, 2015 (in Chinese). (理珍, 博士论文, 中国农业大学, 北京, 2015.)
(e) Yuan, B.-B.; Li, Y.-N.; Guo, J.-M.; Wang, Q.-L.; Bu, Z.-W. Chem. Res. 2017, 28, 135(in Chinese). (袁贝贝, 李雅宁, 郭娇美, 王琪琳, 卜站伟, 化学研究, 2017, 28, 135.)
(f) Zhang, L. M.S. Thesis, Chongqing University, Chongqing, 2018 (in Chinese). (张龙, 硕士论文, 重庆大学, 重庆, 2018.)
(g) Grošelj, U.; Svete, J.; Al Mamari, H. H.; Požgan, F.; Štefane, B. Chem. Heterocycl. Compd. 2018, 54, 214.
(h) Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis 2018, 50, 4525.
(i) Le, G. Z.; Liu, B. Chin. J. Org. Chem. 2020, 40, 3132(in Chinese). (乐贵洲, 刘波, 有机化学, 2020, 40, 3132.)
[10] (a) Tamura, Y.; Minamikawa, J.-I.; Miki, Y.; Okamoto, Y.; Ikeda, M. Yakugaku Zasshi 1973, 93, 648.
(b) Truce, W. E.; Allison, J. R. J. Org. Chem. 1975, 40, 2260.
[11] Hashimoto, T.; Maeda, Y.; Omote, M.; Nakatsu, H.; Maruoka, K. J. Am. Chem. Soc. 2010, 132, 4076.
[12] Zhou, W.; Chen, P.; Tao, M. N.; Su, X.; Zhao, Q. J.; Zhang, J. L. Chem. Commun. 2016, 52, 7612.
[13] Milosevic, S.; Togni, A. J. Org. Chem. 2013, 78, 9638.
[14] Qurban, S.; Du, Y.; Gong, J.; Lin, S.-X.; Kang, Q. Chem. Commun. 2019, 55, 249.
[15] Afanaseva, K. K.; Efremova, M. M.; Kuznetsova, S. V.; Ivanov, A. V.; Starova, G. L.; Molchanov, A. P. Tetrahedron 2018, 74, 5665.
[16] Ling, L.; Chen, J. Q.; Song, J. H.; Zhang, Y. H.; Li, X. Q.; Song, L. J.; Shi, F.; Li, Y. X.; Wu, C. R. Org. Biomol. Chem. 2013, 11, 3894.
[17] Alcaide, B.; Almendros, P.; Quirs, M. T. Chem.-Eur. J. 2014, 20, 3384.
[18] Li, Z.; Yu, H.; Liu, H. L.; Zhang, L.; Jiang, H.; Wang, B.; Guo, H. C. Chem.-Eur. J. 2014, 20, 1731.
[19] Jia, Q. F.; Chen, L.; Yang, G. M.; Wang, J.; Wei, J.; Du, Z. Y. Tetrahedron Lett. 2015, 56, 7150.
[20] Jing, C. F.; Na, R. S.; Wang, B.; Liu, H. L.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J. C.; Kwon, O.; Guo, H. C. Adv. Synth. Catal. 2012, 354, 1023.
[21] Wang, D.; Lei, Y.; Wei, Y.; Shi, M. Chem.-Eur. J. 2014, 20, 15325.
[22] Li, W. J.; Jia, Q. F.; Du, Z. Y.; Zhang, K.; Wang, J. Chem.-Eur. J. 2014, 20, 4559.
[23] Li, W. J.; Wei, J.; Jia, Q. F.; Du, Z. Y.; Zhang, K.; Wang, J. Chem.-Eur. J. 2014, 20, 6592.
[24] Izquierdo, C.; Esteban, F.; Parra, A.; Alfaro, R.; Alemán, J.; Fraile, A.; García Ruano, J. L. J. Org. Chem. 2014, 79, 10417.
[25] Hesping, L.; Biswas, A.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Studer, A. Chem. Sci. 2015, 6, 1252.
[26] (a) Li, B.-S.; Wang, Y. H.; Jin, Z. C.; Chi, Y. R. Chem. Sci. 2015, 6, 6008.
(b) Kirmse, W.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1984, 106, 7989.
[27] Gao, Z. H.; Chen, X. Y.; Cheng, J. T.; Liao, W. L.; Ye, S. Chem. Commun. 2015, 51, 9328.
[28] Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. Nat. Chem. 2015, 7, 842.
[29] Zhang, P. F.; Zhou, Y.; Han, X.; Xu, J. Y.; Liu, H. J. Org. Chem. 2018, 83, 3879.
[30] Kobayashi, M.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2007, 48, 7019.
[31] Liu, X. H.; Wang, Y. J.; Yang, D. X.; Zhang, J. L.; Liu, D. S.; Su, W. Angew. Chem., Int. Ed. 2016, 55, 8100.
[32] Hashimoto, T.; Omote, M.; Maruoka, K. Angew. Chem., Int. Ed. 2011, 50, 3489.
[33] Wang, Y.; Wang, Q.; Zhu, J. P. Chem.-Eur. J. 2016, 22, 8084.
[34] Mousseau, J. J.; Fortier, A.; Charette, A. B. Org. Lett. 2010, 12, 516.
[35] Mousseau, J. J.; Bull, J. A.; Ladd, C. L.; Fortier, A.; Roman, D. S.; Charette, A. B. J. Org. Chem. 2011, 76, 8243.
[36] Zhou, W.; Li, X.-X.; Li, G.-H.; Wu, Y.; Chen, Z. L. Chem. Commun. 2013, 49, 3552.
[37] Mao, B. M.; Xu, Y.; Chen, Y. H.; Dong, J. P.; Zhang, J. Y.; Gu, K. J.; Zheng, B.; Guo, H. C. Org. Lett. 2019, 21, 4424.
[38] Mao, B. M.; Zhang, J. Y.; Xu, Y.; Yan, Z. Y.; Wang, W.; Wu, Y. J.; Sun, C. Q.; Zheng, B.; Guo, H. C. Chem. Commun. 2019, 55, 12841.
[39] Koptelov, Y. B.; Saik, S. P.; Molchanov. A. P. Russ. J. Org. Chem. 2011, 47, 537.
[40] Koptelov, Y. B.; Molchanov, A. P.; Kostikov, R. R. Russ. J. Org. Chem. 2015, 51, 11343.
[41] Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 5330.
[42] Wang, D.; Deng, H.-P.; Wei, Y.; Xu, Q.; Shi, M. Eur. J. Org. Chem. 2013, 2, 401.
[43] Liu, X. H.; Yang, D. X.; Wang, K. Z.; Zhang, J. L.; Wang, R. Green Chem. 2017, 19, 82.
[44] Hu, F. Z.; Chen, H.; Zhang, M. M.; Yu, S. W.; Xu, X. Y.; Yuan, W. C.; Zhang, X. M. J. Heterocycl. Chem. 2017, 54, 2922.
[45] (a) Hong, L.; Kai, M.; Wu, C.; Sun, W.; Zhu, G.; Li, G.; Yao, X.; Wang, R. Chem. Commun. 2013, 49, 6713.
(b) Yin, C.; Lin, L.; Zhang, D.; Feng, J.; Liu, X.; Feng, X. J. Org. Chem. 2015, 80, 9691.
(c) Lu, Y. L.; Sun, J.; Jiang, Y. H.; Yan, C. G. RSC Adv. 2016, 6, 50471.
[46] Wu, Y. F.; Tian, B.; Hu, C.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Biomol. Chem. 2019, 17, 5505.
[47] Na, R. S.; Liu, H. L.; Li, Z.; Wang, B.; Liu, J.; Wang, M.-A.; Wang, M.; Zhong, J. C.; Guo, H. C. Tetrahedron 2012, 68, 2349.
[48] Zhang, L.; Jing, C. F.; Liu, H. L.; Wang, B.; Li, Z.; Jiang, H.; Yu, H.; Guo, H. C. Synthesis 2013, 45, 0053.
[49] Li, F. L.; Chen, J. F.; Hou, Y. D.; Li, Y. J.; Wu, X.-Y.; Tong, X. F. Org. Lett. 2015, 17, 5376.
[50] He, L. W. Z.; Liu, L.; Han, R. F.; Zhang, W. W.; Xie, X. G.; She, X. G. Org. Biomol. Chem. 2016, 14, 6757.
[51] Zhao, J. J.; Li, P.; Wu, C. R.; Chen, H. L.; Ai, W. Y.; Sun, R. H.; Ren, H. L.; Larockb, R. C.; Shi, F. Org. Biomol. Chem. 2012, 10, 1922.
[52] Li, Y.-K.; Cui, M.-X.; Sha, F.; Li, Q.; Wu, X.-Y. Org. Biomol. Chem. 2019, 17, 8963.
[53] Zhang, L.; Liu, H. L.; Qiao, G. Y.; Hou, Z. F.; Liu, Y.; Xiao, Y. M.; Guo, H. C. J. Am. Chem. Soc. 2015, 137, 4316.
[54] Li, Z.; Yu, H.; Liu, Y.; Zhou, L. J.; Sun, Z. H.; Guo, H. C. Adv. Synth. Catal. 2016, 358, 1880.
[55] (a) Xia, Y. Z.; Liang, Y.; Chen, Y. Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y. H.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 3470.
(b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617.
(c) Liang, Y.; Liu, S.; Xia, Y. Z.; Li, Y. H.; Yu, Z. X. Chem.-Eur. J. 2008, 14, 4361.
(d) Liang, Y.; Liu, S.; Yu, Z. X. Synlett 2009, 905.
(e) Huang, G.-T.; Lankau, T.; Yu, C.-H. J. Org. Chem. 2014, 79, 1700.
[56] Zhu, C.-Z.; Feng, J.-J.; Zhang, J. L. Chem. Commun. 2017, 53, 4688.
[57] Yu, L.; Zhong, Y.; Yu, J.; Gan, L.; Cai, Z. J.; Wang, R.; Jiang, X. X. Chem. Commun. 2018, 54, 2353.
[58] Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.; Sun, X.-L.; Li, Y.-X.; Wang, L.-J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452.
[59] Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2013, 52, 12664.
[60] Marichev, K. O.; Adly, F. G.; Carranco, A. M.; Garcia, E. C.; Arman, H.; Doyle, M. P. ACS Catal. 2018, 8, 10392.
[61] Wang, K. K.; Li, Y. L.; Wang, Z. Y.; Hu, M. W.; Qiua, T. T.; Zhu, B. K. Org. Biomol. Chem. 2019, 17, 244.
[62] Li, Z.; Yu, H.; Feng, Y. L.; Hou, Z. F.; Zhang, L.; Yang, W. J.; Wu, Y.; Xiao, Y. M.; Guo, H. C. RSC Adv. 2015, 5, 34481.
[63] Wang, Y. F.; Zhu, L. P.; Wang, M. R.; Xiong, J. L.; Chen, N. N.; Feng, X.; Xu, Z. Q.; Jiang, X. X. Org. Lett. 2018, 20, 6506.
[64] (a) Wang, Q.; Li, T.-R.; Liu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J. J. Am. Chem. Soc. 2016, 138, 8360.
(b) Li, T.-R.; Wang, Y.-N.; Xiao, W.-J.; Liu, L.-Q. Tetrahedron Lett. 2018, 59, 1521.
[65] Hu, X. Q.; Chen, J. R.; Gao, S.; Feng, B.; Lu, L. Q.; Xiao, W.-J. Chem. Commun. 2013, 49, 7905.
[66] (a) Yang, Q.-Q.; Xiao, C.; Lu, L.-Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 9137.
(b) Yang, Q.-Q.; Wang, Q.; An, J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem.-Eur. J. 2013, 19, 8401.
(c) Liu, Y.-Y.; Yu, X.-Y.; Chen, J.-R.; Qiao, M.-M.; Qi, X.; Shi, D.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 9527.
(d) Yang, Q.-Q.; Xiao, W.-J. Eur. J. Org. Chem. 2017, 2017, 233.
(e) Zheng, Y.; Tu, L.; Li, N.; Huang, R.; Feng, T.; Sun, H.; Li, Z.; Liu, J. Adv. Synth. Catal. 2019, 361, 44.
(f) Hua, T.-B.; Yang, Q.-Q.; Zou, Y.-Q. Molecules 2019, 24, 3191.
(g) Hua, T.-B.; Chao, F.; Wang, L.; Yan, C.-Y.; Xiao, C.; Yang, Q.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2020, 362, 2615.
[67] Chen, L.; Yang, G. M.; Wang, J.; Jia, Q. F.; Wei, J.; Du, Z. Y. RSC Adv. 2015, 5, 76696.
[68] Zhi, Y.; Zhao, K.; Shu, T.; Enders, D. Synthesis 2016, 48, 238.
[69] Xu, J. F.; Yuan, S. R.; Peng, J. Y.; Miao, M. Z.; Chen, Z. K.; Ren, H. J. Org. Biomol. Chem. 2017, 15, 7513.
[70] Zheng, P. F.; Zeng, R.; Jiang, K.; Li, H. W.; Ye, Y.; Mu, C.; Shuai, L.; Ouyang, Q.; Chen, Y. C. Org. Lett. 2019, 21, 10052.
[71] Soeta, T.; Tamura, K.; Ukaji, Y. Org. Lett. 2012, 14, 1226.
[72] Soeta, T.; Tamura, K.; Fujinami, S.; Ukaji, Y. Org. Biomol. Chem. 2013, 11, 2168.
[73] Lariveé, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52.
[74] Zhao, Z.-Q.; Zhao, X.-L.; Shi, M.; Zhao, M.-X. J. Org. Chem. 2019, 84, 14487.
[75] Fang, L.; Chen, L. S.; Yu, J. J.; Wang, L. M. Eur. J. Org. Chem. 2015, 2015, 1910.
[76] Hashimoto, T.; Omote, M.; Maruoka, K. Angew. Chem., Int. Ed. 2011, 50, 8952.
[77] Hua, Z. R.; Fang, L.; Wu, S. Y.; Wang, L. M. Eur. J. Org. Chem. 2016, 2016, 4953.
[78] Li, D.; Yang, D. X.; Wang, L. Q.; Liu, X. H.; Wang, K. Z.; Wang, J.; Wang, P. X.; Liu, Y. Y.; Zhu, H. Y.; Wang, R. Chem.-Eur. J. 2017, 23, 6974.
[79] Zhang, D.; Liu, J. W.; Kang, Z. H.; Qiu, H.; Hu, W. H. Org. Biomol. Chem. 2019, 17, 9844.
[80] Hua, T.-B.; Xiao, C.; Yang, Q.-Q.; Chen, J.-R. Chin. Chem. Lett. 2020, 31, 311.
[81] Zhou, Z.-L.; Liu, Y.-L.; Song, J.-L.; Deng, C.-L. Synthesis 2016, 48, 2057.
[82] Sakai, T.; Soeta, T.; Inomata, K.; Ukaji, Y. Bull. Chem. Soc. Jpn. 2012, 85, 231.
[83] (a) Lu, L.-Q.; Li, T.-R.; Wang, Q.; Xiao, W.-J. Chem. Soc. Rev. 2017, 46, 4135.
(b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Rev. 2015, 115, 5301.
[84] Soeta, T.; Ohgai, T.; Sakai, T.; Fujinami, S.; Ukaji, Y. Org. Lett. 2014, 16, 4854.
Outlines

/