Chinese Journal of Organic Chemistry >
Synthesis of Alkynes Composed of the Novel Substituents and Their Reactions with B(C6F5)3
Received date: 2020-07-06
Revised date: 2020-08-17
Online published: 2020-09-16
Supported by
the General Project of National Natural Science Foundation of China(21972112); the General Project of National Natural Science Foundation of China(21673191)
Five alkyne compounds of varied novel substituents as Mes2HSiC≡CPh (1, Mes=2,4,6-Me3C6H2), [tBuC- (NAr)2]GeC≡CPh (2, Ar=2,6-iPr2C6H3), [PhC(NtBu)2]SnC≡CPPh2 (3), [HC(CMe)2(NAr)2]SnC≡CPPh2, (4) and [HC(C- Me)2(NAr)2]ZnC≡CPPh2 (5) have been synthesized. Compounds 1 and 2 reacted with B(C6F5)3 by the 1,1-carboboration to give compounds (Ph)(Mes2HSi)C=C(C6F5)B(C6F5)2 (6) and {[tBuC(NAr)2]Ge}(Ph)C=C(C6F5)B(C6F5)2 (7), respectively, where (F5C6)3B/Mes2HSi group exchange was suggested to occur initially for the former reaction while the (F5C6)3B/ [tBuC(NAr)2]Ge exchange was for the latter one. Compound 6 is a acyclic alkene whereas 7 is viewed as a germanaboracyclo- butene owing to a strong GeII→B donor-acceptor bonding being a GeII/B frustrated Lewis pair (FLP). Compounds 3~5 reacted with B(C6F5)3 to undergo a ligand coordinated metal group/B(C6F5)3 exchange followed by bonding of metal group at PPh2, resulting in the formation of a novel type of intramolecular zwitterionic alkynes [PhC(NtBu)2]SnP(Ph2)C≡CB(C6F5)3(8), [HC(CMe)2(NAr)2]SnP(Ph2)C≡CB(C6F5)3 (9), and [HC(CMe)2(NAr)2]ZnP(Ph2)C≡CB(C6F5)3 (10), respectively. Compounds 1~10 have been characterized by spectroscopy and elemental analysis, of which 4, 6, 7, and 10 are further authenticated by X-ray crystallography. The mechanisms of these reactions are discussed.
Xin Xi , Gongping Zhang , Jiancheng Li , Yanting Huang , Wenjun Jiang , Peng Wu , Hongping Zhu . Synthesis of Alkynes Composed of the Novel Substituents and Their Reactions with B(C6F5)3[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 766 -775 . DOI: 10.6023/cjoc202007018
[1] | (a) Wrackmeyer B.; Zentgraf R. J. Chem. Soc., Chem. Commun. 1978, 402. |
[1] | (b) Wrackmeyer B.; Bihlmayer C.; Schilling M. Chem. Ber. 1983, 116, 3182. |
[1] | (c) Wrackmeyer B.; Dorfler U.; Kehr G.; Maisel H.E.; Milius W. J. Organomet. Chem. 1996, 524, 169. |
[2] | Parks D.J.; Piers W.E.; Yap G. P. A.Organometallics 1998, 17, 5492. |
[3] | Wrackmeyer B. Proc. 6th Int. Meet. on Boron Chemistry World Scientific, Singapore, 1987, 387. |
[3] | (b) Wrackmeyer B. Coord. Chem. Rev. 1995, 145, 125. |
[3] | (c) Wrackmeyer B. Heteroat. Chem. 2006, 17, 188. |
[3] | (d) Wrackmeyer B.; Khan E. Eur. J. Inorg. Chem. 2016, 300. |
[4] | (a) Kehr G.; Erker G.Chem. Commun. 2012, 48, 1839. |
[4] | (b) Kehr G.; Erker G.Chem. Sci. 2016, 7, 56. |
[5] | Dierker G.; Ugolotti J.; Kehr G.; Fr?hlich R.; Erker G. Adv. Synth. Catal. 2009, 351, 1080. |
[6] | (a) Welch G.C.; San R.R.; Masuda J.D.; Stephan D. W.Science 2006, 314, 1124. |
[6] | (b) Stephan D.W. Acc. Chem. Res. 2015, 48, 306. |
[6] | (c) Stephan D.W. J. Am. Chem. Soc. 2015, 137, 10018. |
[6] | (d) Stephan D. W. Science 2016, 354, 1248. |
[6] | (e) Stephan D.W.; Erker G. Angew. Chem., Int. Ed. 2015, 54, 6400. |
[7] | Ekkert O.; Kehr G.; Fr?hlich R.; Erker G. J. Am. Chem. Soc. 2011, 133, 4610. |
[8] | Eller C.; Kehr G.; Daniliuc C.G.; Fr?hlich R.; Erker G. Organometallics 2013, 32, 384. |
[9] | (a) Tsao F.A.; Stephan D.W. Dalton Trans. 2015, 44, 71. |
[9] | (b) Tsao F.A.; Cao L.; Grimme S.; Stephan D.W. J. Am. Chem. Soc. 2015, 137, 13264. |
[10] | Li J.; Li B.; Liu R.; Jiang L.; Zhu H.; Roesky H.W.; Dutta S.; Koley D.; Liu W.; Ye Q. Chem. Eur. J. 2016, 22, 14499. |
[11] | (a) Wrackmeyer B.; Horchler K.; Boese R. Angew. Chem. Int. Ed. 1989, 28, 1500. |
[11] | (b) Wrackmeyer B.; Kehr G.; Boese R. Chem. Ber. 1992, 125, 643. |
[11] | (c) Wrackmeyer B.; Kehr G.; Sebald A.; Kummerlen J. Chem. Ber. 1992, 125, 1597. |
[11] | (d) Wettinger D. Inorg. Chim. Acta 1994, 220, 161. |
[11] | (e) Ekkert O.; Kehr G.; Fr?hlich R.; Erker G. Chem. Commun. 2011, 47, 10482. |
[12] | Li J.; Wu P.; Jiang W.; Li B.; Wang B.; Zhu H.; Roesky H.W. Angew. Chem., Int. Ed. 2020, |
[13] | Huang Y.; Wang X.; Li Y.; Yang M.-C.; Su M.-D; Zhu H. Chem. Commun. 2019, 55, 1494. |
[14] | Powell S.A.; Tenenbaum J.M.; Woerpel K.A. J. Am. Chem. Soc. 2002, 124, 12648. |
[15] | (a) Prust J.; Hohmeister H.; Stasch A.; Roesky H.W.; Magull J.; Alexopoulos E.; Usón I.; Schmidt H.; Noltemeyer M. Eur. J. Inorg. Chem. 2002, 2156. |
[15] | (b) Dove A.P.; Gibson V.C.; Marshall E.L.; Rzepa H.S.; White A. J. P.; Williams D.J. J. Am. Chem. Soc. 2006, 128, 9834. |
[16] | Jana A.; Roesky H.W.; Schulzke C.; Samuel P.P. Organometallics 2010, 29, 4837. |
[17] | Liedtke R.; Kehr G.; Fr?hlich R.; Daniliuc C.G.; Wibbeling B.; Petersen J.L.; Erker G. Helv. Chim. Acta 2012, 95, 2515. |
[18] | The Compile Group of the Practical Chemistry Handbook The Practical Chemistry Handbook, Science Press, Beijing, 2001. (in Chinese) |
[18] | 实用化学手册编写组, 实用化学手册, 科学出版社, 北京, 2001.). |
[19] | Huang Y.; Jiang W.; Xi X.; Li Y.; Wang X.; Yang M.-C.; Zhang Z.-F.; Su M.-D; Zhu H. Eur. J. Inorg. Chem. 2020, 3496. |
[20] | (a) Ding Y.; Hao H.; Roesky H.W.; Noltemeyer M.; Schmidt H.-G. Organometallics 2001, 20, 4806. |
[20] | (b) Rupar P.A.; Jennings M.C.; Ragogna P.J.; Baines K.M. Organometallics 2007, 26, 4109. |
[20] | (c) Leung W.-P.; Chiu W.-K.; Mak T. C. W.Organometallics 2012, 31, 6966. |
[21] | Wrackmeyer B. Annu. Rep. NMR Spectrosc. 1988, 20, 61. |
[22] | Yu J.; Kehr G.; Daniliuc C.G.; Erker G. Inorg. Chem. 2013, 52, 11661. |
[23] | Qian B.; Ward D.L.; Smith M.R. Organometallics 1998, 17, 3070. |
[24] | Green S.P.; Jones C.; Junk P.C.; Lippert K.A.; Stasch A. Chem. Commun. 2006, 3978. |
[25] | Sen S.S.; Kritzler-Kosch M.; Nagendran S.; Roesky H.W. Eur. J. Inorg. Chem. 2010, 5304. |
[26] | Massey A.G.; Park A.J. J. Organomet. Chem. 1964, 2, 245. |
/
〈 |
|
〉 |