REVIEWS

Progress in Fluoroalkylation of Multicomponent

  • Jun Pan ,
  • Jingjing Wu ,
  • Fanhong Wu
Expand
  • 1 Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418
* Corresponding authors. E-mail: ;

Received date: 2020-07-08

  Revised date: 2020-08-09

  Online published: 2020-09-16

Supported by

National Natural Science Foundation of China(21672151); National Natural Science Foundation of China(21602136)

Abstract

Multi-component fluoroalkylation is a hot topic in organic fluorine chemistry. In the past few years, due to the development of new reagents and new methods, multi-component fluoroalkylation reactions have made great progress. It can not only introduce fluoroalkyl groups with other functional groups in one step economically and effectively, but also transform the starting materials into a variety of compounds with biological or pharmaceutical. The development of multi-component fluoroalkylation over the past decade is reviewed from seven parts: three-component difluoroalkylation reaction, three-component trifluoroalkylation reaction, three-component perfluoroalkylation reaction, three-component monofluoro- alkylation reaction, three-component fluorination and four-component fluoroalkylation and conclusion. At the same time, this kind of reaction is summarized and prospected.

Cite this article

Jun Pan , Jingjing Wu , Fanhong Wu . Progress in Fluoroalkylation of Multicomponent[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 983 -1001 . DOI: 10.6023/cjoc202007025

References

[1]
(a) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585.
[1]
(b) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837. (in Chinese)
[1]
(王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.)
[1]
(c) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662. (in Chinese)
[1]
(张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
[1]
(d) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
[1]
(e) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
[2]
Qing, F. L. Chin. J. Org. Chem. 2012, 32, 815. (in Chinese)
[2]
(卿凤翎, 有机化学, 2012, 32, 815.)
[3]
(a) Schlosser, M. Angew. Chem.. Int. Ed. 2006, 45, 5432.
[3]
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[3]
(c) Purse, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[3]
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
[3]
(e) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785. (in Chinese)
[3]
(王江, 柳红, 有机化学, 2011, 31, 1785.).
[4]
(a) An, L.; Tong, F. F.; Zhang, X. G. Acta Chim. Sinica 2018, 76, 977. (in Chinese)
[4]
(安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
[4]
(b) He, X.; Gao, X.; Zhang, X. G. Chin. J. Chem. 2018, 36, 1059.
[4]
(c) Xie, Q. Q.; Hu, J. B. Chin. J. Chem. 2020, 38, 202.
[5]
(a) Ni, C. F.; Zhu, L. G.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90. (in Chinese)
[5]
(倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
[5]
(b) Lü, C. P.; Shen, Q. L.; Liu, D. Chin. J. Org. Chem. 2012, 32, 1380. (in Chinese)
[5]
(吕翠萍, 沈其龙, 刘丹, 有机化学, 2012, 32, 1380.).
[6]
(a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
[6]
(b) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinku?hler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. Chem. Lett. 2002, 12, 701.
[6]
(c) Xu, Y.; Qian, L.; Pontsler, A. V.; McIntyre, T. M.; Prestwich, G. D. Tetrahedron Lett. 2004, 60, 43.
[6]
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[6]
(e) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. J. Med. Chem. 2009, 52, 1525.
[7]
(a) Nguyen, J. D.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
[7]
(b) Wallentin, C. J.; Nguyenand, J. D. C.; Stephenson, R. J. J. Am. Chem. Soc. 2012, 134, 8875.
[8]
Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262.
[9]
Lv, X. L.; Wang, C.; Wang, Q. L.; Shu, W. Org. Lett. 2019, 21, 56.
[10]
Xu, R.; Cai, C. Chem. Commun. 2019, 55, 4383.
[11]
Shu, W.; Merino, E.; Nevado, C. ACS Catal. 2018, 8, 6401.
[12]
Deng, X. Y.; Lin, J. H.; Zheng, J.; Xiao, J. C. Chem. Commun. 2015, 51, 8805.
[13]
Zhang, M.; Lin, J. H.; Xiao, J. C. Angew. Chem., Int. Ed. 2019, 58, 6079.
[14]
Gu, J. W.; Min, Q. Q.; Yu, L. C.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 12270.
[15]
Xu, C.; Yang, Z. F.; An, L.; Zhang, X. G. ACS Catal. 2019, 9, 8224.
[16]
Zhang, K. F.; Bian, K. J.; Li, C.; Sheng, J.; Li, Y.; Wang, X. S. Angew. Chem., Int. Ed. 2019, 58, 5069.
[17]
(a) Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem.. Int. Ed. 2015, 54, 3132.
[17]
(b) Ha, T. M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Angew. Chem.. Int. Ed. 2016, 55, 9249.
[17]
(c) Fan, J.-H.; Wei, W. T.; Zhou, M. B.; Song, R. J.; Li, J. H. Angew. Chem.. Int. Ed. 2014, 53, 6650.
[17]
(d) Ouyang, X. H.; Song, R. J.; Hu, M.; Yang, Y.; Li, J. H. Angew. Chem.. Int. Ed. 2016, 55, 3187.
[17]
(e) Liu, Y. Y.; Yang, X. H.; Song, R. J.; Luo, S.; Li, J. H. Nat. Commun. 2017, 8, 14720.
[17]
(f) Zhou, S. F.; Li, D. P.; Liu, K.; Zou, J. P.; Asekun, O. T. J. Org. Chem. 2015, 80, 1214.
[18]
Kong, W.; Yu, C.; An, H.; Song, Q. L. Org. Lett. 2018, 20, 4975.
[19]
(a) Ke, M.; Feng, Q.; Yang, K.; Song, Q. L. Org. Chem. Front. 2016, 3, 150.
[19]
(b) Ke, M.; Song, Q. J. Org. Chem. 2016, 81, 3654.
[19]
(c) Ke, M.; Song, Q. Adv. Synth. Catal. 2017, 359, 384.
[19]
(d) Ke, M.; Song, Q. Chem. Commun. 2017, 53, 2222.
[19]
(e) Fu, W.; Song, Q. Org. Lett. 2018, 20, 393.
[20]
Chen, Y. J.; Li, L. K.; Ma, Y. Y.; Li, Z. P. J. Org. Chem. 2019, 84, 5328.
[21]
He, Y. T.; Wang, Q.; Li, L. H.; Liu, X. Y.; Xu, P. F.; Liang, Y. M. Org. Lett. 2015, 17, 5188.
[22]
He, Y. T.; Li, L. H.; Wang, Q.; Wu, W.; Liang, Y. M. Org. Lett. 2016, 18, 5158.
[23]
Zhang, P. B.; Ying, J. X.; Tang, G.; Zhao, Y. F. Org. Chem. Front. 2017, 4, 2054.
[24]
Liang, J.Q; Huang, G. Z.; Peng, P.; Zhang, T.; Wu, J.; Wu, F. Adv. Synth. Catal. 2018, 360, 2221.
[25]
(a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358.
[25]
(b) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem.. Int. Ed. 2005, 44, 2380.
[25]
(c) Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438.
[26]
(a) Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2005, 127, 15706.
[26]
(b) Daini, M.; Yamamoto, A.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 2918.
[26]
(c) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134, 14314.
[26]
(d) Alfaro, R.; Parra, A.; Alema?n, J.; Ruano, J. L. G.; Tortosa, M. J. Am. Chem. Soc. 2012, 134, 15165.
[26]
(e) Yoshida, H.; Kageyuki, I.; Takaki, K. Org. Lett. 2013, 15, 952.
[26]
(f) Zhou, Y.; You, W.; Smith, K. B.; Brown, M. K. Angew. Chem.. Int. Ed. 2014, 53, 3475.
[26]
(g) Bidal, Y. D.; Lazreg, F.; Cazin, C. S. J. Am. Chem. Soc. 2014, 4, 1564.
[26]
(h) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem.-Eur. J. 2015, 21, 4257.
[26]
(i) Bin, H. Y.; Wei, X.; Zi, J.; Zuo, Y. J.; Wang, T. C.; Zhong, C. M. ACS Catal. 2015, 5, 6670.
[26]
(j) Kubota, K.; Iwamoto, H.; Yamamoto, E.; Ito, H. Org. Lett. 2015, 17, 620.
[26]
(k) Su, W.; Gong, T. J.; Zhang, Q.; Zhang, Q.; Xiao, B.; Fu, Y. ACS Catal. 2016, 6, 6417.
[26]
(l) Itoh, T.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2016, 138, 7528.
[26]
(m) Mateos, J.; Rivera-Chao, E.; Fan?ana?s-Mastral, M. ACS Catal. 2017, 7, 5340.
[26]
(n) Han, J. T.; Yun, J. Org. Lett. 2018, 20, 2104.
[27]
(a) Mannathan, S.; Jeganmohan, M.; Cheng, C. H. Angew. Chem.. Int. Ed. 2009, 48, 2192.
[27]
(b) Okuno, Y.; Yamashita, M.; Nozaki, K. Angew. Chem.. Int. Ed. 2011, 50, 920.
[27]
(c) Nagao, K.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2014, 136, 10605.
[27]
(d) Yamazaki, A.; Nagao, K.; Lwai, T.; Ohmiya, H.; Sawamura, M. Angew. Chem.. Int. Ed. 2018, 57, 3196.
[27]
(e) Roscales, S.; Csa?ky?, A. G. Org. Lett. 2015, 17, 1605.
[27]
(f) Nogami, M.; Hirano, K.; Kanai, M.; Wang, C.; Saito, T.; Miyamoto, K.; Muranaka, A.; Uchiyama, M. J. Am. Chem. Soc. 2017, 139, 12358.
[28]
Wang, S. F.; Zhang, J.; Kong, L. C.; Tan, Z.; Bai, Y. H.; Zhu, G. G. Org. Lett. 2018, 20, 5631.
[29]
Guo, W. H.; Zhao, H. Y.; Luo, Z. J.; Zhang, S.; Zhang, X. G. ACS Catal. 2019, 9, 38.
[30]
Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2012, 51, 9567.
[31]
Li, Y.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8221.
[32]
Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458.
[33]
Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 1240.
[34]
(a) Sani, M.; Bruche?, L.; Chiva, G.; Fustero, S.; Piera, J.; Volonterio, A.; Zanda, M. Angew. Chem.. Int. Ed. 2003, 42, 2060.
[34]
(b) Ogu, K.; Matsumoto, S.; Akazome, M.; Ogura, K. Org. Lett. 2005, 7, 589.
[34]
(c) Jakowiecki, J.; Loska, R.; Makosza, M. J. Org. Chem. 2008, 73, 5436.
[34]
(d) Fustero, S.; Chiva, G.; Piera, J.; Sanz-Cervera, J. F.; Volonterio, A.; Zanda, M.; Ramirez de Arellano, C. J. Org. Chem. 2009, 74, 3122.
[34]
(e) Benhaim, C.; Bouchard, L.; Pelletier, G.; Sellstedt, J.; Kristofova, L.; Daigneault, S. Org. Lett. 2010, 12, 2008.
[35]
Huang, L.; Zheng, S. C.; Tan, B.; Liu, X. Y. Org. Lett. 2015, 17, 1589.
[36]
(a) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1991, 32, 7525.
[36]
(b) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1992, 33, 1291.
[37]
Yang, Y. D.; Iwamoto, K.; Tokunaga, E.; Shibata, N. Chem. Commun. 2013, 49, 5510.
[38]
Ji, Y.; Brueckl, T.; Baxter, R. D.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U.S. A. 2011, 108, 14411.
[39]
Ye, Y.; Kunzi, S.; Sanford, M. S. Org. Lett. 2012, 14, 4979.
[40]
Jiang, X. Y.; Qing, F. L. Angew. Chem., Int. Ed. 2013, 52, 14177.
[41]
Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. S. Angew. Chem., Int. Ed. 2014, 53, 1881.
[42]
Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340.
[43]
Yang, X.; Sun, Y. W.; Zhang, G. Z. Org. Lett. 2018, 20, 6250.
[44]
Li, Q.; Wang, W.; Berst, K. B.; Claiborne, A.; Hasvold, L.; Raye, K. M.; Nilius, T. A.; Shen, L. L.; Flamm, R.; Alder, J.; Marsh, K.; Crowell, D.; Chu, D. T. W.; Plattner, J. J. Bioorg. Med. Chem. Lett. 1998, 8, 1953.
[45]
Zhu, C. L.; Wang, C.; Qin, Q. X.; Yruegas, S.; Martin, C. D.; Xu, H. ACS Catal. 2018, 8, 12317.
[46]
Liang, Z.; Wang, F.; Chen, P.; Liu, G. Org. Lett. 2015, 17, 2438.
[47]
Grishchuk, B. D.; Prodanchuk, N. G.; Sinchenko, V. G.; Gorbovoi, P. M.; Kudrik, E. Y. Pharm. Chem. J. 1994, 28, 657.
[48]
Szajnman, S. H.; Yan, W.; Bailey, B. N.; Docampo, R.; Elhalem, E.; Rodriguez, J. B. J. Med. Chem. 2000, 43, 1826.
[49]
Kong, W.; An, H.; Song, Q. Chem Commun. 2017, 53, 8968.
[50]
(a) Murdoch, D.; Keam, S. Drugs 2005, 65, 2379.
[50]
(b) Ozoe, Y.; Ishikawa, S.; Tomiyama, S.; Ozoe, F.; Kozaki, T.; Scott, J. G. J. Am. Chem. Soc. 2007, 948, 39.
[51]
He, Y. T.; Li, L. H.; Yang, Y. F.; Zhou, Z. Z.; Hua, H. L.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2014, 16, 270.
[52]
Ichenko, N. O.; Janson, P. G.; Szabo?, K. J. J. Org. Chem. 2013, 78, 11087.
[53]
Liang, Z.; Wang, F.; Chen, P.; Liu, G. J. Fluorine Chem. 2014, 167, 55.
[54]
Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
[55]
Zhang, Z. Q.; Meng, X. Y.; Sheng, J.; Lan, Q.; Wang, X. S. Org. Lett. 2019, 21, 8256.
[56]
Jarrige, L.; Carboni, A.; Dagousset, G.; Levitre, G.; Magnier, E.; Masson, G. Org. Lett. 2016, 18, 2906.
[57]
Mora?n-Ramallal, R.; Gotor-Ferna?ndez, V.; Laborda, P.; Sayago, F. J.; Cativiela, C.; Gotor, V. Org. Lett. 2012, 14, 1696.
[58]
Zhu, Y.; Tian, J. L.; Gu, X. F.; Wang, Y. H. J. Org. Chem. 2018, 83, 13267.
[59]
(a) Ghera, E.; Shoua, S. Tetrahedron Lett. 1974, 15, 3843.
[59]
(b) Zhao, B.; Yuan, W.; Du, H.; Shi, Y. Org. Lett. 2007, 9, 4943.
[59]
(c) Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem.. Int. Ed. 2010, 49, 10154.
[59]
(d) Taniguchi, T.; Idota, A.; Yokoyama, S.; Ishibashi, H. Tetrahedron Lett. 2011, 52, 4768.
[59]
(e) Taniguchi, T.; Zaimoku, H.; Ishibashi, H. Chem.-Eur. J. 2011, 17, 4307. d7eb27a5-b391-48dd-975b-08dfeeb296cf
[59]
(f) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem.. Int. Ed. 2014, 53, 11079.
[59]
(g) Lu, D. F.; Zhu, C. L.; Jia, Z. X.; Xu, H. J. Am. Chem. Soc. 2014, 136, 13186.
[59]
(h) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.
[59]
(i) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y. F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.
[59]
(j) Miner, M. R.; Woerpel, K. A. Eur. J. Org. Chem. 2016, 2016, 1860.
[59]
(k) Lu, D. F.; Zhu, C. L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.
[59]
(l) Cheng, J. K.; Loh, T. P. J. Am. Chem. Soc. 2015, 137, 42.
[59]
(m) Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.
[60]
(a) Alameda-Angulo, C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2006, 47, 913.
[60]
(b) Soueni, A. E.; Tedder, J. M.; Walton, J. C. J. Fluorine Chem. 1981, 17, 51.
[60]
(c) Poutsma, M.; Ibarbia, P. J. Org. Chem. 1970, 35, 4038.
[61]
Wang, F.; Wang, D. H.; Zhou, Yu.; Liang, L.; Lu, R. H.; Chen, P. H.; Lin, Z. Y.; Liu, G. S. Angew. Chem., Int. Ed. 2018, 57, 7140.
[62]
Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202.
[63]
Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.
[64]
Ye, J. H.; Song, L.; Zhou, W. J.; Ju, T.; Yin, Z. B.; Yan, S. S.; Zhang, Z.; Li, J.; Yu, D. G. Angew. Chem., Int. Ed. 2016, 55, 10022.
[65]
Zhou, S.; Song, T.; Chen, H.; Liu, Z.; Shen, H.; Li, C. Org. Lett. 2017, 19, 698.
[66]
Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 10965.
[67]
(a) Fadeyi, O. O.; Adamson, S. T.; Myles, E. L.; Okoro, C. O. Bioorg. Med. Chem. Lett. 2008, 18, 4172.
[67]
(b) Li, J.; Zhang, X.; Xiang, H.; Tong, L.; Feng, F.; Xie, H.; Ding, J.; Yang, C. J. Org. Chem. 2017, 82, 6795.
[67]
(c) Apraku, J.; Okoro, C. O. Bioorg. Med. Chem. 2019, 27, 161.
[68]
Li, J. L.; Liu, Y. Q.; Zou, W. L.; Zeng, R.; Zhang, X.; Liu, Y.; Han, B.; He, Y.; Leng, H. J.; Li, Q. Z. Angew. Chem., Int. Ed. 2020, 59, 1863.
[69]
(a) Park, C. M.; Jiang, Y. J. Chem. Sci. 2014, 5, 2347.
[69]
(b) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett. 2010, 12, 3736.
[69]
(c) Qi, X. X.; Xu, X. X.; Park, C. M. Chem. Commun. 2012, 48, 3996.
[70]
He, Y. T.; Wang, Q.; Zhao, J. H.; Liu, X. Y.; Xua, P. F.; Liang, Y. M. Chem. Commun. 2015, 51, 13209.
[71]
(a) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503.
[71]
(b) Spiteri, C.; Moses, J. E. Angew. Chem.. Int. Ed. 2010, 49, 31.
[72]
Cheung, K. P. S.; Tsui, G. C. Org. Lett. 2017, 19, 2881.
[73]
Zhu, A.; Xing, X. F.; Wang, S. L.; Yuan, D. H.; Zhu, G. M.; Geng, M. W.; Guo, Y. Y.; Zhang, G. S.; Li, L. J. Green Chem. 2019, 21, 3407.
[74]
Chen, C.; Xie, Y.; Chu, L.; Wang, R. W.; Zhang, X.; Qing, F. L. Angew. Chem., Int. Ed. 2012, 51, 2492.
[75]
Cheng, Y.; Muck-Lichtenfeld, C.; Studer, A. J. Am. Chem. Soc. 2018, 140, 6221.
[76]
For reviews of radical additions to C=N bonds: (a) Miyabe, H. Synlett 2012, 23, 1709.
[76]
(b) Friestad, G. K. Tetrahedron 2001, 57, 5461.
[76]
(c) Friestad, G. K. Eur. J. Org. Chem. 2005, 2005, 3157.
[76]
(d) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541.
[76]
(e) Yamada, K.; Tomioka, K. Chem. Rev. 2008, 108, 2874.
[77]
Zheng, D. Q.; Studer, A. Org. Lett. 2019, 21, 325.
[78]
Zhao, X.; Tu, H. Y.; Guo, L.; Zhu, S. Q.; Qing, F. L.; Chu, L. L. Nat. Commun. 2018, 9, 3488.
[79]
Tu, H. Y.; W, F.; Huo, L. P.; Li, Y. B.; Zhu, S. Q.; Zhao, X.; Li, H.; Qing, F. L.; Chu, L. L. J. Am. Chem. Soc. 2020, 142, 9604.
[80]
Xiong, H.; Ramkumar, N.; Chiou, M. F.; Jian, W.; Li, Y.; Su, J. H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 1.
[81]
Zhu, X. T.; Deng, W. L.; Chiou, M. F.; Ye, C. Q.; Jian, W. J.; Zeng, Y. H.; Jiao, Y. H.; Ge, L.; Li, Y. J.; Zhang, X. H.; Bao, H. L. J. Am. Chem. Soc. 2019, 141, 548.
[82]
Chu, X. Q.; Xie, Ting.; Li, Lin.; Ge, D. H.; Shen, Z. L.; Loh, T. P. Org. Lett. 2018, 20, 2749.
[83]
(a) Davidson, B. S. Chem. Rev. 1993, 93, 1771.
[83]
(b) Jin, Z. Nat. Prod. Rep. 2006, 23, 464.
[83]
(c) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
[84]
(a) Wu, Y. C.; Liron, M.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 7148.
[84]
(b) Zhang, C.; Zink, D. L.; Ushio, M.; Burgess, B.; Onishi, R.; Masurekar, P.; Barrett, J. F.; Singh, S. B. Bioorg. Med. Chem. 2008, 16, 8818.
[84]
(c) Ii, K.; Ichikawa, S.; Al-Dabbagh, B.; Bouhss, A.; Matsuda, A. J. Med. Chem. 2010, 53, 3793.
[84]
(d) Andrade, S. F.; Teixeiraa, C. S.; Ramosb, J. P.; Lopesa, M. S.; Páduaa, R. M.; Oliveiraa, M. C.; Souza-Fagundes, E. M.; Alves, R. J. MedChemComm 2014, 5, 1693.
[84]
(e) Andrade, S. F.; Oliveira, B. G.; Pereira, L. C.; Ramos, J. P.; Joaquim, A. R.; Steppe, M. E.; SouzaFagundes, M.; Alves, R. J. Eur. J. Med. Chem. 2017, 138, 13.
[85]
Chu, X. Q.; Ge, D. H.; Wang, M. L.; Rao, W. D.; Loh, T. P.; Shen, Z. L. Adv. Synth. Catal. 2019, 361, 4082.
[86]
For leading reviews, see: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[86]
(b) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[87]
For reviews, see: (a) Paria, S.; Reiser, O. ChemCatChem 2014, 6, 2477.
[87]
(b) Reiser, O. Acc. Chem. Res. 2016, 49, 1990.
[88]
Guo, Q. P.; Wang, M. R.; Wang, Y. F.; Xu, Z. Q.; Wang, R. Chem. Commun. 2017, 53, 12317.
[89]
Liu, H.; Guo, Q. P.; Chen, C.; Wang, M. R.; Xu, Z. Q. Org. Chem. Front. 2018, 5, 1522.
[90]
Guo, Q. P.; Wang, M. G.; Peng, Q.; Huo, Y. M.; Liu, Q.; Wang, R.; Xu, Z. Q. ACS Catal. 2019, 9, 4470.
[91]
Li, Z.; Andre?s, G. D.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610.
[92]
Li, Z. D.; Merino, E.; Nevado, C. Top. Catal. 2017, 60, 545.
[93]
Domański, S.; Cha?adaj, W. ACS Catal. 2016, 6, 3452.
[94]
Domanski, S.; Gatlik, B.; Chaladaj, W. Org. Lett. 2019, 21, 5021.
[95]
Ni, C. F.; Zhu, L. G.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90. (in Chinese)
[95]
(倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
[96]
Wu, N. Y.; Xu, X. H.; Qing, F. L. ACS Catal. 2019, 9, 5726.
[97]
Zhang, C. W.; Li, Z. D.; Zhu, L.; Yu, L. M.; Wang, Z. T.; Li, C. Z. J. Am. Chem. Soc. 2013, 135, 14082.
[98]
Peng, H. H.; Yuan, Z. L.; Wang, H. Y.; Guo, Y. L.; Liu, G. S. Chem. Sci. 2013, 4, 3172.
[99]
Yasu, Y.; Koike, T.; Akita, M. Org. Lett. 2013, 15, 2136.
[100]
Liu, C. M.; Shi, E.; Xu, F.; Luo, Q.; Wang, H. X.; Chen, J. J.; Wan, X. B. Chem. Commun. 2015, 51, 1214.
[101]
Wang, Q.; He, Y. T.; Zhao, J. H.; Qiu, Y. F.; Zheng, L.; Hu, J. Y.; Yang, Y. C.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2016, 18, 2664.
[102]
Wang, Q.; Zheng, L.; He, Y. T.; Liang, Y. M. Chem. Commun. 2017, 53, 2814.
Outlines

/