Review

Research and Application of 2-Iodoxybenzoic Acid in Organic Synthesis

  • Shuyu Zhang ,
  • Haotian Wu ,
  • E Tang
Expand
  • 1 Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091

Received date: 2020-07-09

  Revised date: 2020-08-11

  Online published: 2020-09-16

Supported by

the Program for Changjiang Scholars and Innovative Research Team in University(IRT13095); the Natural Science Foundation of China(21762046); the Program for Yunnan Provincial Department of Science and Technology-Yunnan University "Double First-Class" Construction Joint Fund(2018FY001); the Program for Scientifically and Technologically Innovative Research Teams in the Universities in Yunnan Province and the Program for the “Young Talent” in Yunnan University.

Abstract

High-valent organoiodine reagents have many reaction characteristics similar to transition metals, and high-valent organoiodine-mediated reactions feature mild reaction conditions, good product selectivity, high yield and environmental friendliness. Therefore, they have been widely studied and applied in organic synthesis. The recent research progress of 2-iodoxybenzoic acid in organic synthesis is reviewed, including the oxidation of hydroxyl group, nitrogen-containing compounds and sulfur-containing compounds, the preparation of α,β-unsaturated carbonyl compounds and esters, and the application in asymmetric synthesis. The recent improvement of IBX is also introduced.

Cite this article

Shuyu Zhang , Haotian Wu , E Tang . Research and Application of 2-Iodoxybenzoic Acid in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 490 -503 . DOI: 10.6023/cjoc202007030

References

[1]
Willgerodt C. J. Prakt. Chem. 1886, 33, 154.
[2]
Dess D.B.; Martin J.C. J. Org. Chem. 1983, 48, 4155.
[3]
(a) Reddy Kandimalla, S.; Prathima Parvathaneni, S.; Sabitha, G.; Subba Reddy, B.V. Eur. J. Org. Chem. 2019, 2019, 1687.
[3]
(b) Zhang H.; Tang R.; Shi X.; Xie L; Wu J.W. Chin. J. Org. Chem. 2019, 39, 1837. (in Chinese)
[3]
张怀远, 唐蓉萍; 石星丽; 颉林; 伍家卫, 有机化学, 2019, 39, 1837.).
[3]
(c) Liu D.; He J.; Zhang C. Univ. Chem. 2019, 34, 1. (in Chinese)
[3]
刘丹, 贺家豪, 张弛, 大学化学, 2019, 34, 1).
[3]
(d) Li X.; Chen P.; Liu G. Beilstein J. Org. Chem. 2018, 14, 1813.
[3]
(e) Gao H.; Huang J.; Jiang Q.; Guo W.; Ge C.; Jiang H. Chem. Reagents 2016, 38, 1165. (in Chinese)
[3]
高浩凌, 黄骏, 江群, 郭文光, 葛承胜, 姜洪涛, 化学试剂, 2016, 38, 1165.).
[3]
(f) Duan Y.-N.; Jiang S.; Han Y.-C.; Sun B.; Zhang C. Chin. J. Org. Chem. 2016, 36, 1973. (in Chinese)
[3]
段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.).
[3]
(g) Chen J.; Qu H.; Peng J.; Chen C. Chin. J. Org. Chem. 2015, 35, 937. (in Chinese)
[3]
陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.).
[4]
(a) Satam V.; Harad A.; Rajule R.; Pati H. Tetrahedron 2010, 66, 7659.
[4]
(b) Qin K.Y.; Su G.F.; Rao W.P.; Tan G.M. Chin. J. Org. Chem. 2006, 26, 1623. (in Chinese)
[4]
覃开云, 苏桂发, 饶万平, 谭光明, 有机化学, 2006, 26, 1623.).
[5]
Frigerio M.; Santagostino M. Tetrahedron Lett. 1994, 35, 8019.
[6]
Wang Y.-H.; Cong H.; Zhao F.-F.; Xue S.-F.; Tao Z.; Zhu Q.-J.; Wei G. Catal. Commun. 2 0 11, 12, 1127.
[7]
Bartlett S.L.; Beaudry C.M. J. Org. Chem. 2011, 76, 9852.
[8]
Liu Y.; Xie A.; Cao M.; Feng L.; Wang B. Asian J. Chem. 2015, 27, 587.
[9]
Xie A.; Zhou X.; Feng L.; Hu X.; Dong W. Tetrahedron 2014, 70, 3514.
[10]
Kumar S.; Ahmed N. Green Chem. 2016, 18, 648.
[11]
Raghavan S.; Kumar V.V. Tetrahedron 2013, 69, 4835.
[12]
Kamal A.; Shaik A.B.; Jain N.; Kishor C.; Nagabhushana A.; Supriya B.; Bharath Kumar G.; Chourasiya S.S.; Suresh Y.; Mishra R.K.; Addlagatta A. Eur. J. Med. Chem. 2015, 92, 501.
[13]
Kinoshita Y.; Kitagawa Y.; Tamiaki H. Chem.- Eur. J. 2016, 22, 9996.
[14]
Kawase M.; Saijo R.; Mori S.; Uno H. Heterocycles 2017, 94, 2103.
[15]
Karimov R.R.; Tan D.S.; Gin D.Y. Tetrahedron 2018, 74, 3370.
[16]
Parasuraman K.; Chennaiah A.; Dubbu S.; Ibrahim Sheriff A.K.; Vankar Y.D. Carbohydr. Res. 2019, 477, 26.
[17]
(a) Dai D.; Venepalli B.R. Tetrahedron Lett. 2015, 56, 2402.
[17]
(b) Stephenson G.R.; Roe C.; Anson C.E. J. Org. Chem. 2012, 77, 9684.
[18]
Lu T.-J.; Lin C.-K. J. Org. Chem. 2011, 76, 1621.
[19]
Takale B.S.; Telvekar V.N. Chem. Lett. 2010, 39, 546.
[20]
Chen L.-X.; Huang Y.-H.; Cong H.; Tao Z. Chem. Pap. 2018, 72, 661.
[21]
Narayana Murthy, S.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 4481.
[22]
Chandrasekar S.; Sekar G. Org. Biomol. Chem. 2016, 14, 3053.
[23]
Parmeggiani C.; Matassini C.; Cardona F.; Goti A. Synthesis 2017, 49, 2890.
[24]
Matassini C.; Parmeggiani C.; Cardona F.; Goti A. Org. Lett. 2015, 17, 4082.
[25]
Moorthy J.N.; Neogi I. Tetrahedron Lett. 2011, 52, 3868.
[26]
Alam M.T.; Maiti S.; Mal P. Beilstein J. Org. Chem. 2018, 14, 2396.
[27]
Khan P.R.; Durgaprasad M.; Reddy S.G.; Reddy G.R.; Hussein I.A.; Subba Reddy, B.V.Lett. Org. Chem. 2018, 15, 64.
[28]
Wagh Y.S.; Tiwari N.J.; Bhanage B.M. Tetrahedron Lett. 2013, 54, 1290.
[29]
Victor N.J.; Muraleedharan K.M. Adv. Synth. Catal. 2014, 356, 3600.
[30]
Makra Z.; Puskas L.G.; Kanizsai I. Org. Biomol. Chem. 2019, 17, 9001.
[31]
Harschneck T.; Hummel S.; Kirsch S.F.; Klahn P. Chem.- Eur. J. 2012, 18, 1187.
[32]
Potturi H.K.; Gurung R.K.; Hou Y. J. Org. Chem. 2012, 77, 626.
[33]
Zhang Z.; Zheng D.; Wan Y.; Zhang G.; Bi J.; Liu Q.; Liu T.; Shi L. J. Org. Chem. 2018, 83, 1369.
[34]
Ambule M.D.; Tripathi S.; Ghoshal A.; Srivastava A.K. Chem. Commun. 2019, 55, 10872.
[35]
Zhang Z.G.; Li X.; Song M.M.; Wang Y.M.; Zheng D.; Zhang G.S.; Chen G. J. Org. Chem. 2019, 84, 12792.
[36]
Shukla V.G.; Salgaonkar P.D.; Akamanchi K.G. J. Org. Chem. 2003, 68, 5422.
[37]
Poeira D.L.; Macara J.; Faustino H.; Coelho J. A. S.; Gois P. M. P.; Marques M. M. B.Eur. J. Org. Chem. 2019, 2019, 2695.
[38]
Moorthy J.N.; Senapati K.; Parida K.N.; Jhulki S.; Sooraj K.; Nair N.N. J. Org. Chem. 2011, 76, 9593.
[39]
Ogawa S.; Zhou B.; Kimoto Y.; Omura K.; Kobayashi A.; Higashi T.; Mitamura K.; Ikegawa S.; Hagey L.R.; Hofmann A.F.; Iida T. Steroids 2013, 78, 927.
[40]
Ren J.; Lu L.; Xu J.; Yu T.; Zeng B.-B. Synthesis 2015, 47, 2270.
[41]
Kuga T.; Sasano Y.; Iwabuchi Y. Chem. Commun. 2018, 54, 798.
[42]
Chaves M. R. B.; Moran P. J. S.; Rodrigues J. A. R.J. Mol. Catal. B : Enzym. 2013, 98, 73.
[43]
Satish G.; Polu A.; Ramar T.; Ilangovan A. J. Org. Chem. 2015, 80, 5167.
[44]
Sundaravelu N.; Chakraborty A.; Sekar G. ChemistrySelect 2018, 3, 8167.
[45]
Saidhareddy P.; Ajay S.; Shaw A.K. Tetrahedron 2017, 73, 4407.
[46]
Kang Y.K.; Kim D.Y. Chem. Commun. 2014, 50, 222.
[47]
Barontini M.; Bernini R.; Crisante F.; Fabrizi G. Tetrahedron 2010, 66, 6047.
[48]
Desai V.G.; Desai S.R. Curr. Org. Synth. 2017, 14, 1180.
[49]
Boulange A.; Peixoto P.A.; Franck X. Chem.- Eur. J. 2011, 17, 10241.
[50]
Xu S.; Itto K.; Satoh M.; Arimoto H. Chem. Commun. 2014, 50, 2758.
[51]
Kan X.-W.; Deng X.-X.; Du F.-S.; Li Z.-C. Macromol. Chem. Phys. 2014, 215, 2221.
[52]
Mukherjee S.; Yang J.W.; Hoffmann S.; List B. Chem. Rev. 2007, 107, 5471.
[53]
Hu X.; Yang X.; Dai X.-J.; Li C.-J. Adv. Synth. Catal. 2017, 359, 2402.
[54]
Zall A.; Bensinger D.; Schmidt B. Eur. J. Org. Chem. 2012, 2012, 1439.
[55]
Deshmukh S.S.; Huddar S.N.; Jadhav R.R.; Akamanchi K.G. Tetrahedron Lett. 2011, 52, 4533.
[56]
Guha S.; Kazi I.; Mukherjee P.; Sekar G. Chem. Commun. 2017, 53, 10942.
[57]
Mishra A.K.; Moorthy J.N. Org. Chem. Front. 2017, 4, 343.
[58]
Moorthy J.N.; Parida K.N. J. Org. Chem. 2014, 79, 11431.
[59]
Seth S.; Jhulki S.; Moorthy J.N. Eur. J. Org. Chem. 2013, 2013, 2445.
[60]
Jhulki S.; Seth S.; Mondal M.; Moorthy J.N. Tetrahedron 2014, 70, 2286.
[61]
Chandra A.; Parida K.N.; Moorthy J.N. Tetrahedron 2017, 73, 5827.
[62]
Mishra A.K.; Moorthy J.N. J. Org. Chem. 2016, 81, 6472.
[63]
Mishra A.K.; Mukhopadhyay A.; Moorthy J.N. Tetrahedron 2017, 73, 2210.
[64]
Chandra A.; Jana K.; Moorthy J.N. ACS Omega 2020, 5, 207.
[65]
Chandra A.; Yadav N.R.; Moorthy J.N. Tetrahedron 2019, 75, 2169.
[66]
Zhao M.-L.; Zhang E.; Gao J.; Zhang Z.; Zhao Y.-T.; Qu W.; Liu H.-M. Carbohydr. Res. 2012, 351, 126.
[67]
Kobayashi T.; Tanaka K.; Ishida M.; Yamakita N.; Abe H.; Ito H. Chem. Commun. 2018, 54, 10316.
[68]
Tognetti V.; Boulangé A.; Peixoto P.A.; Franck X.; Joubert L. J. Mol. Model. 2014, 20, 2342.
[69]
Jiang H.; Sun T.-Y.; Wang X.; Xie Y.; Zhang X.; Wu Y.-D.; Schaefer H.F. Org. Lett. 2017, 19, 6502.
[70]
Chipman A.; Farshadfar K.; Smith J.A.; Yates B.F.; Ariafard A. J. Org. Chem. 2020, 85, 515.
[71]
Wagh G.; Autade S.; Patil P.C.; Akamanchi K.G. New J. Chem. 2018, 42, 3301.
[72]
Magano J.; Acciacca A.; Akin A.; Collman B.M.; Conway B.; Waldo M.; Chen M.H.; Mennen K.E. Org. Process Res. Dev. 2009, 13, 555.
[73]
Koch A.A.; Hansen D.A.; Shende V.V.; Furan L.R.; Houk K.N.; Jimenez-Oses G.; Sherman D.H. J. Am. Chem. Soc. 2017, 139, 13456.
[74]
Singh A.; Mir N.A.; Choudhary S.; Singh D.; Sharma P.; Kant R.; Kumar I. RSC Adv. 2018, 8, 15448.
[75]
Mullagiri K.; Nayak V.L.; Sunkari S.; Mani G.S.; Guggilapu S.D.; Nagaraju B.; Alarifi A.; Kamal A. MedChemComm 2018, 9, 275.
[76]
Srinivas A.; Karthik P.; Sunitha M.; Reddy K.V. Acta Chim. Slovaca 2019, 66, 700.
[77]
Zhu L.; Ma W.; Zhang M.; Lee M.M.-L.; Wong W.-Y.; Chan B.D.; Yang Q.; Wong W.-T.; Tai W.C.-S.; Lee C.-S. Nat. Commun. 2018, 9, 1.
[78]
Yusubov M.S.; Soldatova N.S.; Postnikov P.S.; Valiev R.R.; Yoshimura A.; Wirth T.; Nemykin V.N.; Zhdankin V.V. Chem. Commun. 2019, 55, 7760.
[79]
Kumanyaev I.M.; Lapitskaya M.A.; Vasiljeva L.L.; Pivnitsky K.K. Mendeleev Commun. 2012, 22, 129.
[80]
Achar T.K.; Maiti S.; Mal P. RSC Adv. 2014, 4, 12834.
[81]
Achar T.K.; Bose A.; Mal P. Beilstein J. Org. Chem. 2017, 13, 1907.
[82]
Yakura T.; Fujiwara T.; Yamada A.; Nambu H. Beilstein J. Org. Chem. 2018, 14, 971.
[83]
Cui L.-Q.; Dong Z.-L.; Liu K.; Zhang C. Org. Lett. 2011, 13, 6488.
Outlines

/