Chinese Journal of Organic Chemistry >
Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions
Received date: 2020-07-18
Revised date: 2020-08-29
Online published: 2020-09-16
Supported by
the National Natural Science Foundation of China(U1504206); the China Postdoctoral Science Foundation(2020M672200); the Henan University(SYL19060137); the Henan University(SYL19030204)
Bridged rings are frequently encountered in natural products and biologically active molecules, which have significant application in the field of medicinal chemistry, natural product chemistry, synthetic chemistry, material chemistry and life science. In recent years, with the unremitting efforts of a large number of chemists, a series of new methods have been developed for the efficient synthesis of bridged compounds. The detailed synthetic methods to access bridged compounds in the past five years involving cycloadditions and cascade reactions are summarized, and the advantages and problems of the current methods are briefly analyzed, which would provide useful reference for the researchers engaged in organic synthesis and related fields.
Key words: Keywords bridged ring; cycloaddition; cascade reaction
Lele Wang , Ziying Zhang , Huabin Han , Xiongli Liu , Zhanwei Bu , Qilin Wang . Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 12 -51 . DOI: 10.6023/cjoc202007045
[1] | (a) Thopate S.B.; Jadhav S.B.; Nanubolu J.B.; Chegondi R. ACS Catal. 2019, 9, 10012. |
[1] | (b) Gouse S.; Reddy N.R.; Baskaran S. Org. Lett. 2019, 21, 3822. |
[1] | (c) Liu Z.G.; Meng Y.F.; Yuan P.R.; Wang Z.S.; Gao J.M.; Zheng H.J. Org. Lett. 2020, 22, 520. |
[2] | Chao C.H.; Cheng J.C.; Shen D.Y.; Wu T.S. J. Nat. Prod. 2014, 77, 22. |
[3] | Xu J.; Wang M.C.; Sun X.S.; Ren Q.H.; Cao X.R.; Li S.; Su G.C.; Tuerhong M.; Lee D.H.; Ohizumi Y.; Bartlam M.; Guo Y.Q. J. Nat. Prod. 2016, 79, 2924. |
[4] | (a) Yan Y.M.; Ai J.; Zhou L.L.; Chung A.C.K.; Li R.; Nie J.; Fang P.; Wang X.L.; Luo J.; Hu Q.; Hou F.F.; Cheng Y.X. Org. Lett. 2013, 15, 5488. |
[4] | (b) Riehl P.S.; Richardson A.D.; Sakamoto T.; Schindler C.S. Org. Lett. 2020, 22, 290. |
[5] | (a) Carroll A.R.; Hyde E.; Smith J.; Quinn R.J.; Guymer G.; Forster P.I. J. Org. Chem. 2005, 70, 1096. |
[5] | (b) Martin C.L.; Overman L.E.; Rohde J.M. J. Am. Chem. Soc. 2008, 130, 7568. |
[6] | Bera S.; Chatterjee B.; Mondal D. Eur. J. Org. Chem. 2018, 5337. |
[7] | (a) Shan D.; Jia Y.X. Chin. J. Org. Chem. 2013, 33, 1144. |
[7] | ( 单东, 贾彦兴, 有机化学, 2013, 33, 1144.). |
[7] | (b) Yuan K.; Jia Y.X. Chin. J. Org. Chem. 2018, 38, 2386. |
[7] | ( 袁括, 贾彦兴, 有机化学, 2018, 38, 2386.). |
[8] | (a) Liu J.Y.; Liu X.; Wu J.L.; Li C.C. Chem 2020, 6, 579. |
[8] | (b) Min L.; Liu X.; Li C.C. Acc. Chem. Res. 2020, 53, 703. |
[8] | (c) Liu X.; Hu Y.J.; Fan J.H.; Zhao J.; Li S.P.; Li C.C. Org. Chem. Front. 2018, 5, 1217. |
[9] | (a) Mu W.H.; Cheng R.J.; Shang Y.W.; He R.Z.; Li D.L.; Fu M. Chin. J. Org. Chem. 2018, 38, 1327. |
[9] | ( 母伟花, 程瑞姣, 商英伟, 贺仁泽, 李冬丽, 傅冕, 有机化学, 2018, 38, 1327.). |
[9] | (b) Feng T.; Du J.; Yan W.J.; Li X.; Gao W.C.; Chang H.H.; Wei W.L. Chin. J. Org. Chem. 2019, 39, 1197. |
[9] | ( 冯涛, 杜佳, 闫文静, 李兴, 高文超, 常宏宏, 魏文珑, 有机化学, 2019, 39, 1197.). |
[9] | (c) Cai Q. Chin. J. Chem. 2019, 37, 946. |
[9] | (d) Zhang Y.C.; Jiang F.; Shi F. Acc. Chem. Res. 2020, 53, 425. |
[10] | (a) O’Hagan D. Nat. Prod. Rep. 2000, 17, 435. |
[10] | (b) Cheenpracha S.; Ritthiwigrom T.; Laphookhieo S. J. Nat. Prod. 2013, 76, 723. |
[11] | Narayan R.; Bauer J.O.; Strohmann C.; Antonchick A.P.; Waldmann H. Angew. Chem., Int. Ed. 2013, 52, 12892. |
[12] | Wang Z.; Wang D.C.; Xie M.S.; Qu G.R.; Guo H.M. Org. Lett. 2020, 22, 164. |
[13] | Jia Z.J.; Shan G.; Daniliuc C.G.; Antonchick A.P.; Waldmann H. Angew. Chem., Int. Ed. 2018, 57, 14493. |
[14] | Suga H.; Yoshiwara M.; Yamaguchi T.; Bando T.; Taguchi M.; Inaba A.; Goto Y.; Kikuchi A.; Itoh K.; Toda Y. Chem. Commun. 2019, 55, 1552. |
[15] | Kang Z.H.; Zhang D.; Hu W.H. Org. Lett. 2017, 19, 3783. |
[16] | Leitch J.A.; Rogova T.; Duarte F.; Dixon D.J. Angew. Chem., Int. Ed. 2020, 59, 4121. |
[17] | Liu X.Y.; Yin Y.L.; Jiang Z.Y. Chem. Commun. 2019, 55, 11527. |
[18] | (a) Rao Y.; Yin G.D. Org. Biomol. Chem. 2013, 11, 6029. |
[18] | (b) Gao Y.Q.; Hou Y.; Zhu L.M.; Chen G.Z.; Xu D.Y.; Zhang S.Y.; He Y.P.; Xie W.Q. RSC Adv. 2019, 9, 29005. |
[19] | Zhu Y.S.; Zhou J.; Jin S.J.; Dong H.H.; Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. Chem. Commun. 2017, 53, 11201. |
[20] | Zhu Y.S.; Guo J.; Jin S.J.; Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. Org. Biomol. Chem. 2018, 16, 1751. |
[21] | Jin S.J.; Guo J.; Fang D.M.; Huang Y.W.; Wang Q.L.; Bu Z.W. Adv. Synth. Catal. 2019, 361, 456. |
[22] | Balha M.; Pan S.C. J. Org. Chem. 2018, 83, 14703. |
[23] | Balha M.; Soni C.; Pan S.C. Eur. J. Org. Chem. 2019, 2552. |
[24] | Ramachary D.B.; Anif Pasha M.; Thirupathi G. Angew. Chem., Int. Ed. 2017, 56, 12930. |
[25] | Cui R.R.; Ye J.X.; Li J.; Mo W.H.; Gao Y.; Chen H.J. Org. Lett. 2020, 2 2, 116. |
[26] | Buev E.M.; Stepanov M.A.; Moshkin V.S.; Sosnovskikh V.Y. Org. Lett. 2020, 22, 631. |
[27] | Fan W.T.; Li N.K.; Xu L.M.; Qiao C.H.; Wang X.W. Org. Lett. 2017, 19, 6626. |
[28] | Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. J. Org. Chem. 2018, 83, 3679. |
[29] | You Z.H.; Chen Y.H.; Tang Y.; Liu Y.K. Org. Lett. 20 18, 20, 6682. |
[30] | Liu H.X.; Wang Y.; Guo X.Y.; Huo L.Q.; Xu Z.F.; Zhang W.M.; Qiu S.X.; Yang B.; Tan H.B. Org. Lett. 2018, 20, 546. |
[31] | Guo J.M.; Miao H.J.; Zhao Y.; Bai X.G.; Zhu Y.S.; Wang Q.L.; Bu Z.W. Chem. Commun. 2019, 55, 5207. |
[32] | Huo L.Q.; Dong C.M.; Wang M.M.; Lu X.X.; Zhang W.G.; Yang B.; Yuan Y.F.; Qiu S.X.; Liu H.X.; Tan H.B. Org. Lett. 2020, 22, 934. |
[33] | Zheng X.; Yang W.L.; Liu Y.Z.; Wu S.X.; Deng W.P. Adv. Synth. Catal. 2018, 360, 2843. |
[34] | Gao R.D.; Xu Q.L.; Zhang B.; Gu Y.T.; Dao L.X.; You S.L. Chem. -Eur. J. 2016, 22, 11601. |
[35] | Luo M.P.; Chen J.X.; Yu L.Q.; Wei W.G. Eur. J. Org. Chem. 2017, 2017, 2652. |
[36] | Wang W.B.; Bai X.G.; Jin S.J.; Guo J.M.; Zhao Y.; Miao H.J.; Zhu Y.S.; Wang Q.L.; Bu Z.W. Org. Lett. 20 18, 20, 3451. |
[37] | (a) Wang Y.; Li H.M.; Wang Y.Q.; Liu Y.; Foxman B.M.; Deng L. J. Am. Chem. Soc. 2007, 129, 6364. |
[37] | (b) Singh R.P.; Bartelson K.; Wang Y.; Su H.; Lu X.J.; Deng L. J. Am. Chem. Soc. 2008, 130, 2422. |
[37] | (c) Soh J.Y.T.; Tan C.H. J. Am. Chem. Soc. 2009, 131, 6904. |
[37] | (d) Bartelson K.J.; Singh R.P.; Foxman B.M.; Deng L. Chem. Sci. 2011, 2, 1940. |
[38] | Shi L.M.; Dong W.W.; Tao H.Y.; Dong X.Q.; Wang C.J. Org. Lett. 2017, 19, 4532. |
[39] | Cole C.J.F.; Fuentes L.; Snyder S.A. Chem. Sci. 2020, 11, 2175. |
[40] | Saktura M.; Grzelak P.; Dybowska J.; Albrecht, ?.Org. Lett. 2020, 22, 1813. |
[41] | Yarlagadda S.; Sankaram G.S.; Balasubramanian S.; Reddy B.V.S. Org. Lett. 2018, 20, 4195. |
[42] | Katritzky A.R.; Dennis N. Chem. Rev. 1989, 89, 827. |
[43] | Fu C.C.; Lora N.; Kirchhoefer P.L.; Lee D.R.; Altenhofer E.; Barnes C.L.; Hungerford N.L.; Krenske E.H.; Harmata M. Angew. Chem., Int. Ed. 2017, 56, 14682. |
[44] | Villar L.; Uria U.; Martínez J.I.; Prieto L.; Reyes E.; Carrillo L.; Vicario J.L. Angew. Chem., Int. Ed. 2017, 56, 10535. |
[45] | Lam H.; Qureshi Z.; Wegmann M.; Lautens M. Angew. Chem., Int. Ed. 2018, 57, 16185. |
[46] | Xu C.R.; Wang K.X.; Li D.W.; Lin L.L.; Feng X.M. Angew. Chem., Int. Ed. 2019, 58, 18438. |
[47] | Suneja A.; Loui H.J.; Schneider C. Angew. Chem., Int. Ed. 2020, 59, 5536. |
[48] | Reddy K.N.; Chary D.Y.; Sridhar B.; Reddy B.V.S. Org. Lett. 2019, 21, 8548. |
[49] | Feng J.; Zhou M.; Lin X.Z.; Lu A.; Zhang X.Y.; Zhao M. Org. Lett. 2019, 21, 6245. |
[50] | Cheng X.; Cao X.; Zhou S.J.; Cai B.G.; He X.K.; Xuan J. Adv. Synth. Catal. 2019, 361, 1230. |
[51] | Pirovano V.; Brambilla E.; Moretti A.; Rizzato S.; Abbiati G.; Nava D.; Rossi E. J. Org. Chem. 2020, 85, 3265. |
[52] | Wang H.K.; Zeng T.L.; Li X.H.; Wang S.M.; Xiao W.G.; Liu L.Y.; Chang W.X.; Li J. Org. Chem. Front. 2020, 7, 1809. |
[53] | Li Q.; Jiang G.J.; Jiao L.; Yu Z.X. Org. Lett. 2010, 12, 1332. |
[54] | (a) Mei G.J.; Yuan H.; Gu Y.Q.; Chen W.; Chung L.W.; Li C.C. Angew. Chem., Int. Ed. 2014, 53, 11051. |
[54] | (b) Mei G.J.; Liu X.; Qiao C.; Chen W.; Li C.C. Angew. Chem., Int. Ed. 2015, 54, 1754. |
[55] | Liu J.Y.; Wu J.L.; Fan J.H.; Yan X.; Mei G.J.; Li C.C. J. Am. Chem. Soc. 2018, 140, 5365. |
[56] | Liu X.; Liu J.Y.; Wu J.L.; Huang G.C.; Liang R.; Chung L.W.; Li C.C. J. Am. Chem. Soc. 2019, 141, 2872. |
[57] | Liu X.; Liu J.Y.; Zhao J.; Li S.P.; Li C.C. Org. Lett. 2017, 19, 2742. |
[58] | Xu J.H.; Zheng S.C.; Zhang J.W.; Liu X.Y.; Tan B. Angew. Chem., Int. Ed. 2016, 55, 11834. |
[59] | Hu B.W.; Zhang X.Y.; Mo Y.H.; Li J.Z.; Lin L.L.; Liu X.H.; Feng X.M. Org. Lett. 2020, 22, 1034. |
[60] | Ma Y.L.; Wang K.M.; Huang R.; Lin J.; Yan S.J. Green Chem. 2017, 19, 3574. |
[61] | Guo S.H.; Liu Y.F.; Wang Y.P.; Zhang X.Y.; Fan X.S. J. Org. Chem. 2020, 85, 8910. |
[62] | (a) Zhou J. Chem. -Asian J. 2010, 5, 422. |
[62] | (b) Grondal C.; Jeanty M.; Enders D. Nat. Chem. 2010, 2, 167. |
[62] | (c) Lu L.Q.; Chen J.R.; Xiao W.J. Acc. Chem. Res. 2012, 45, 1278. |
[62] | (d) Pellissier H. Adv. Synth. Catal. 2012, 354, 237. |
[62] | (e) Chen D.F.; Han Z.Y.; Zhou X.L.; Gong L.Z. Acc. Chem. Res. 2014, 47, 2365. |
[62] | (f) Volla C.M.R.; Atodiresei I.; Rueping M. Chem. Rev. 2014, 114, 2390. |
[62] | (g) Wang Y.; Lu H.; Xu P.F. Acc. Chem. Res. 2015, 48, 1832. |
[63] | Tokimizu Y.; Oishi S.; Fujii N.; Ohno H. Angew. Chem. Int. Ed. 2015, 54, 7862. |
[64] | Han Y.P.; Song X.R.; Qiu Y.F.; Li X.S.; Zhang H.R.; Zhu X.Y.; Liu X.Y.; Liang Y.M. Org. Lett. 2016, 18, 3866. |
[65] | Du J.Y.; Ma Y.H.; Meng F.X.; Chen B.L.; Zhang S.L.; Li Q.L.; Gong S.W.; Wang D.Q.; Ma C.L. Org. Lett. 2018, 20, 4371. |
[66] | Ma S.S.; Yu A.M.; Zhang L.; Meng X.T. J. Org. Chem. 2018, 83, 5410. |
[67] | Gurubrahamam R.; Nagaraju K.; Chen K. Chem. Commun. 2018, 54, 6048. |
[68] | Yang S.M.; Karanam P.; Wang M.; Jang Y.J.; Yeh Y.S.; Tseng P.Y.; Ganapuram M.R.; Liou Y.C.; Lin W.W. Chem. Commun. 2019, 55, 1398. |
[69] | Wang C.; Chen Y.H.; Wu H.C.; Wang C.; Liu Y.K. Org. Lett. 2019, 21, 6750. |
[70] | Borade B.R.; Nomula R.; Gonnade R.G.; Kontham R. Org. Lett. 2019, 21, 2629. |
[71] | Jiang B.; Xiao B.X.; Ouyang Q.; Liang H.P.; Du W.; Chen Y.C. Org. Lett. 2019, 21, 3310. |
[72] | Jakkampudi S.; Konda S.; Arman H.; Zhao J.C.G. Adv. Synth. Catal. 2020, 362, 2419. |
[73] | Wang S.D.; Guillot R.; Carpentier J.F.; Sarazin Y.; Bour C.; Gandon V.; Lebœuf D. Angew. Chem., Int. Ed. 2020, 59, 1134. |
[74] | Miao H.J.; Wang L.L.; Han H.B.; Zhao Y.D.; Wang Q.L.; Bu Z.W. Chem. Sci. 2020, 11, 1418. |
[75] | Bai X.G.; Miao, H, J.; Zhao, Y.; Wang, Q.L.; Bu, Z.W.Org. Lett. 202 0, 22, 5068. |
[76] | Wang L.L.; Han H.B.; Cui Z.H.; Zhao J.W.; Bu Z.W.; Wang Q.L. Org. Lett. 2020, 22, 873. |
[77] | Lachkar D.; Denizot N.; Bernadat G.; Ahamada K.; Beniddir M.A.; Dumontet V.; Gallard J.F.; Guillot R.; Leblanc K.; N’nang E.O.; Turpin V.; Kouklovsky C.; Poupon E.; Evanno L.; Vincent G. Nat. Chem. 2017, 9, 793. |
[78] | Li L.; Yuan K.; Jia Q.L.; Jia Y.X. Angew. Chem., Int. Ed. 2019, 58, 6074. |
[79] | Tan D.X.; Zhou J.; Liu C.Y.; Han F.S. Angew. Chem., Int. Ed. 2020, 59, 3834. |
[80] | Yu Y.Y.; Li G.; Jiang L.; Zuo L.S. Angw. Chem., Int. Ed. 2015, 54, 12627. |
/
〈 |
|
〉 |