REVIEWS

Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions

  • Lele Wang ,
  • Ziying Zhang ,
  • Huabin Han ,
  • Xiongli Liu ,
  • Zhanwei Bu ,
  • Qilin Wang
Expand
  • a College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004
    b Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025

Received date: 2020-07-18

  Revised date: 2020-08-29

  Online published: 2020-09-16

Supported by

the National Natural Science Foundation of China(U1504206); the China Postdoctoral Science Foundation(2020M672200); the Henan University(SYL19060137); the Henan University(SYL19030204)

Abstract

Bridged rings are frequently encountered in natural products and biologically active molecules, which have significant application in the field of medicinal chemistry, natural product chemistry, synthetic chemistry, material chemistry and life science. In recent years, with the unremitting efforts of a large number of chemists, a series of new methods have been developed for the efficient synthesis of bridged compounds. The detailed synthetic methods to access bridged compounds in the past five years involving cycloadditions and cascade reactions are summarized, and the advantages and problems of the current methods are briefly analyzed, which would provide useful reference for the researchers engaged in organic synthesis and related fields.

Cite this article

Lele Wang , Ziying Zhang , Huabin Han , Xiongli Liu , Zhanwei Bu , Qilin Wang . Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 12 -51 . DOI: 10.6023/cjoc202007045

References

[1]
(a) Thopate S.B.; Jadhav S.B.; Nanubolu J.B.; Chegondi R. ACS Catal. 2019, 9, 10012.
[1]
(b) Gouse S.; Reddy N.R.; Baskaran S. Org. Lett. 2019, 21, 3822.
[1]
(c) Liu Z.G.; Meng Y.F.; Yuan P.R.; Wang Z.S.; Gao J.M.; Zheng H.J. Org. Lett. 2020, 22, 520.
[2]
Chao C.H.; Cheng J.C.; Shen D.Y.; Wu T.S. J. Nat. Prod. 2014, 77, 22.
[3]
Xu J.; Wang M.C.; Sun X.S.; Ren Q.H.; Cao X.R.; Li S.; Su G.C.; Tuerhong M.; Lee D.H.; Ohizumi Y.; Bartlam M.; Guo Y.Q. J. Nat. Prod. 2016, 79, 2924.
[4]
(a) Yan Y.M.; Ai J.; Zhou L.L.; Chung A.C.K.; Li R.; Nie J.; Fang P.; Wang X.L.; Luo J.; Hu Q.; Hou F.F.; Cheng Y.X. Org. Lett. 2013, 15, 5488.
[4]
(b) Riehl P.S.; Richardson A.D.; Sakamoto T.; Schindler C.S. Org. Lett. 2020, 22, 290.
[5]
(a) Carroll A.R.; Hyde E.; Smith J.; Quinn R.J.; Guymer G.; Forster P.I. J. Org. Chem. 2005, 70, 1096.
[5]
(b) Martin C.L.; Overman L.E.; Rohde J.M. J. Am. Chem. Soc. 2008, 130, 7568.
[6]
Bera S.; Chatterjee B.; Mondal D. Eur. J. Org. Chem. 2018, 5337.
[7]
(a) Shan D.; Jia Y.X. Chin. J. Org. Chem. 2013, 33, 1144.
[7]
( 单东, 贾彦兴, 有机化学, 2013, 33, 1144.).
[7]
(b) Yuan K.; Jia Y.X. Chin. J. Org. Chem. 2018, 38, 2386.
[7]
( 袁括, 贾彦兴, 有机化学, 2018, 38, 2386.).
[8]
(a) Liu J.Y.; Liu X.; Wu J.L.; Li C.C. Chem 2020, 6, 579.
[8]
(b) Min L.; Liu X.; Li C.C. Acc. Chem. Res. 2020, 53, 703.
[8]
(c) Liu X.; Hu Y.J.; Fan J.H.; Zhao J.; Li S.P.; Li C.C. Org. Chem. Front. 2018, 5, 1217.
[9]
(a) Mu W.H.; Cheng R.J.; Shang Y.W.; He R.Z.; Li D.L.; Fu M. Chin. J. Org. Chem. 2018, 38, 1327.
[9]
( 母伟花, 程瑞姣, 商英伟, 贺仁泽, 李冬丽, 傅冕, 有机化学, 2018, 38, 1327.).
[9]
(b) Feng T.; Du J.; Yan W.J.; Li X.; Gao W.C.; Chang H.H.; Wei W.L. Chin. J. Org. Chem. 2019, 39, 1197.
[9]
( 冯涛, 杜佳, 闫文静, 李兴, 高文超, 常宏宏, 魏文珑, 有机化学, 2019, 39, 1197.).
[9]
(c) Cai Q. Chin. J. Chem. 2019, 37, 946.
[9]
(d) Zhang Y.C.; Jiang F.; Shi F. Acc. Chem. Res. 2020, 53, 425.
[10]
(a) O’Hagan D. Nat. Prod. Rep. 2000, 17, 435.
[10]
(b) Cheenpracha S.; Ritthiwigrom T.; Laphookhieo S. J. Nat. Prod. 2013, 76, 723.
[11]
Narayan R.; Bauer J.O.; Strohmann C.; Antonchick A.P.; Waldmann H. Angew. Chem., Int. Ed. 2013, 52, 12892.
[12]
Wang Z.; Wang D.C.; Xie M.S.; Qu G.R.; Guo H.M. Org. Lett. 2020, 22, 164.
[13]
Jia Z.J.; Shan G.; Daniliuc C.G.; Antonchick A.P.; Waldmann H. Angew. Chem., Int. Ed. 2018, 57, 14493.
[14]
Suga H.; Yoshiwara M.; Yamaguchi T.; Bando T.; Taguchi M.; Inaba A.; Goto Y.; Kikuchi A.; Itoh K.; Toda Y. Chem. Commun. 2019, 55, 1552.
[15]
Kang Z.H.; Zhang D.; Hu W.H. Org. Lett. 2017, 19, 3783.
[16]
Leitch J.A.; Rogova T.; Duarte F.; Dixon D.J. Angew. Chem., Int. Ed. 2020, 59, 4121.
[17]
Liu X.Y.; Yin Y.L.; Jiang Z.Y. Chem. Commun. 2019, 55, 11527.
[18]
(a) Rao Y.; Yin G.D. Org. Biomol. Chem. 2013, 11, 6029.
[18]
(b) Gao Y.Q.; Hou Y.; Zhu L.M.; Chen G.Z.; Xu D.Y.; Zhang S.Y.; He Y.P.; Xie W.Q. RSC Adv. 2019, 9, 29005.
[19]
Zhu Y.S.; Zhou J.; Jin S.J.; Dong H.H.; Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. Chem. Commun. 2017, 53, 11201.
[20]
Zhu Y.S.; Guo J.; Jin S.J.; Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. Org. Biomol. Chem. 2018, 16, 1751.
[21]
Jin S.J.; Guo J.; Fang D.M.; Huang Y.W.; Wang Q.L.; Bu Z.W. Adv. Synth. Catal. 2019, 361, 456.
[22]
Balha M.; Pan S.C. J. Org. Chem. 2018, 83, 14703.
[23]
Balha M.; Soni C.; Pan S.C. Eur. J. Org. Chem. 2019, 2552.
[24]
Ramachary D.B.; Anif Pasha M.; Thirupathi G. Angew. Chem., Int. Ed. 2017, 56, 12930.
[25]
Cui R.R.; Ye J.X.; Li J.; Mo W.H.; Gao Y.; Chen H.J. Org. Lett. 2020, 2 2, 116.
[26]
Buev E.M.; Stepanov M.A.; Moshkin V.S.; Sosnovskikh V.Y. Org. Lett. 2020, 22, 631.
[27]
Fan W.T.; Li N.K.; Xu L.M.; Qiao C.H.; Wang X.W. Org. Lett. 2017, 19, 6626.
[28]
Guo J.M.; Bai X.G.; Wang Q.L.; Bu Z.W. J. Org. Chem. 2018, 83, 3679.
[29]
You Z.H.; Chen Y.H.; Tang Y.; Liu Y.K. Org. Lett. 20 18, 20, 6682.
[30]
Liu H.X.; Wang Y.; Guo X.Y.; Huo L.Q.; Xu Z.F.; Zhang W.M.; Qiu S.X.; Yang B.; Tan H.B. Org. Lett. 2018, 20, 546.
[31]
Guo J.M.; Miao H.J.; Zhao Y.; Bai X.G.; Zhu Y.S.; Wang Q.L.; Bu Z.W. Chem. Commun. 2019, 55, 5207.
[32]
Huo L.Q.; Dong C.M.; Wang M.M.; Lu X.X.; Zhang W.G.; Yang B.; Yuan Y.F.; Qiu S.X.; Liu H.X.; Tan H.B. Org. Lett. 2020, 22, 934.
[33]
Zheng X.; Yang W.L.; Liu Y.Z.; Wu S.X.; Deng W.P. Adv. Synth. Catal. 2018, 360, 2843.
[34]
Gao R.D.; Xu Q.L.; Zhang B.; Gu Y.T.; Dao L.X.; You S.L. Chem. -Eur. J. 2016, 22, 11601.
[35]
Luo M.P.; Chen J.X.; Yu L.Q.; Wei W.G. Eur. J. Org. Chem. 2017, 2017, 2652.
[36]
Wang W.B.; Bai X.G.; Jin S.J.; Guo J.M.; Zhao Y.; Miao H.J.; Zhu Y.S.; Wang Q.L.; Bu Z.W. Org. Lett. 20 18, 20, 3451.
[37]
(a) Wang Y.; Li H.M.; Wang Y.Q.; Liu Y.; Foxman B.M.; Deng L. J. Am. Chem. Soc. 2007, 129, 6364.
[37]
(b) Singh R.P.; Bartelson K.; Wang Y.; Su H.; Lu X.J.; Deng L. J. Am. Chem. Soc. 2008, 130, 2422.
[37]
(c) Soh J.Y.T.; Tan C.H. J. Am. Chem. Soc. 2009, 131, 6904.
[37]
(d) Bartelson K.J.; Singh R.P.; Foxman B.M.; Deng L. Chem. Sci. 2011, 2, 1940.
[38]
Shi L.M.; Dong W.W.; Tao H.Y.; Dong X.Q.; Wang C.J. Org. Lett. 2017, 19, 4532.
[39]
Cole C.J.F.; Fuentes L.; Snyder S.A. Chem. Sci. 2020, 11, 2175.
[40]
Saktura M.; Grzelak P.; Dybowska J.; Albrecht, ?.Org. Lett. 2020, 22, 1813.
[41]
Yarlagadda S.; Sankaram G.S.; Balasubramanian S.; Reddy B.V.S. Org. Lett. 2018, 20, 4195.
[42]
Katritzky A.R.; Dennis N. Chem. Rev. 1989, 89, 827.
[43]
Fu C.C.; Lora N.; Kirchhoefer P.L.; Lee D.R.; Altenhofer E.; Barnes C.L.; Hungerford N.L.; Krenske E.H.; Harmata M. Angew. Chem., Int. Ed. 2017, 56, 14682.
[44]
Villar L.; Uria U.; Martínez J.I.; Prieto L.; Reyes E.; Carrillo L.; Vicario J.L. Angew. Chem., Int. Ed. 2017, 56, 10535.
[45]
Lam H.; Qureshi Z.; Wegmann M.; Lautens M. Angew. Chem., Int. Ed. 2018, 57, 16185.
[46]
Xu C.R.; Wang K.X.; Li D.W.; Lin L.L.; Feng X.M. Angew. Chem., Int. Ed. 2019, 58, 18438.
[47]
Suneja A.; Loui H.J.; Schneider C. Angew. Chem., Int. Ed. 2020, 59, 5536.
[48]
Reddy K.N.; Chary D.Y.; Sridhar B.; Reddy B.V.S. Org. Lett. 2019, 21, 8548.
[49]
Feng J.; Zhou M.; Lin X.Z.; Lu A.; Zhang X.Y.; Zhao M. Org. Lett. 2019, 21, 6245.
[50]
Cheng X.; Cao X.; Zhou S.J.; Cai B.G.; He X.K.; Xuan J. Adv. Synth. Catal. 2019, 361, 1230.
[51]
Pirovano V.; Brambilla E.; Moretti A.; Rizzato S.; Abbiati G.; Nava D.; Rossi E. J. Org. Chem. 2020, 85, 3265.
[52]
Wang H.K.; Zeng T.L.; Li X.H.; Wang S.M.; Xiao W.G.; Liu L.Y.; Chang W.X.; Li J. Org. Chem. Front. 2020, 7, 1809.
[53]
Li Q.; Jiang G.J.; Jiao L.; Yu Z.X. Org. Lett. 2010, 12, 1332.
[54]
(a) Mei G.J.; Yuan H.; Gu Y.Q.; Chen W.; Chung L.W.; Li C.C. Angew. Chem., Int. Ed. 2014, 53, 11051.
[54]
(b) Mei G.J.; Liu X.; Qiao C.; Chen W.; Li C.C. Angew. Chem., Int. Ed. 2015, 54, 1754.
[55]
Liu J.Y.; Wu J.L.; Fan J.H.; Yan X.; Mei G.J.; Li C.C. J. Am. Chem. Soc. 2018, 140, 5365.
[56]
Liu X.; Liu J.Y.; Wu J.L.; Huang G.C.; Liang R.; Chung L.W.; Li C.C. J. Am. Chem. Soc. 2019, 141, 2872.
[57]
Liu X.; Liu J.Y.; Zhao J.; Li S.P.; Li C.C. Org. Lett. 2017, 19, 2742.
[58]
Xu J.H.; Zheng S.C.; Zhang J.W.; Liu X.Y.; Tan B. Angew. Chem., Int. Ed. 2016, 55, 11834.
[59]
Hu B.W.; Zhang X.Y.; Mo Y.H.; Li J.Z.; Lin L.L.; Liu X.H.; Feng X.M. Org. Lett. 2020, 22, 1034.
[60]
Ma Y.L.; Wang K.M.; Huang R.; Lin J.; Yan S.J. Green Chem. 2017, 19, 3574.
[61]
Guo S.H.; Liu Y.F.; Wang Y.P.; Zhang X.Y.; Fan X.S. J. Org. Chem. 2020, 85, 8910.
[62]
(a) Zhou J. Chem. -Asian J. 2010, 5, 422.
[62]
(b) Grondal C.; Jeanty M.; Enders D. Nat. Chem. 2010, 2, 167.
[62]
(c) Lu L.Q.; Chen J.R.; Xiao W.J. Acc. Chem. Res. 2012, 45, 1278.
[62]
(d) Pellissier H. Adv. Synth. Catal. 2012, 354, 237.
[62]
(e) Chen D.F.; Han Z.Y.; Zhou X.L.; Gong L.Z. Acc. Chem. Res. 2014, 47, 2365.
[62]
(f) Volla C.M.R.; Atodiresei I.; Rueping M. Chem. Rev. 2014, 114, 2390.
[62]
(g) Wang Y.; Lu H.; Xu P.F. Acc. Chem. Res. 2015, 48, 1832.
[63]
Tokimizu Y.; Oishi S.; Fujii N.; Ohno H. Angew. Chem. Int. Ed. 2015, 54, 7862.
[64]
Han Y.P.; Song X.R.; Qiu Y.F.; Li X.S.; Zhang H.R.; Zhu X.Y.; Liu X.Y.; Liang Y.M. Org. Lett. 2016, 18, 3866.
[65]
Du J.Y.; Ma Y.H.; Meng F.X.; Chen B.L.; Zhang S.L.; Li Q.L.; Gong S.W.; Wang D.Q.; Ma C.L. Org. Lett. 2018, 20, 4371.
[66]
Ma S.S.; Yu A.M.; Zhang L.; Meng X.T. J. Org. Chem. 2018, 83, 5410.
[67]
Gurubrahamam R.; Nagaraju K.; Chen K. Chem. Commun. 2018, 54, 6048.
[68]
Yang S.M.; Karanam P.; Wang M.; Jang Y.J.; Yeh Y.S.; Tseng P.Y.; Ganapuram M.R.; Liou Y.C.; Lin W.W. Chem. Commun. 2019, 55, 1398.
[69]
Wang C.; Chen Y.H.; Wu H.C.; Wang C.; Liu Y.K. Org. Lett. 2019, 21, 6750.
[70]
Borade B.R.; Nomula R.; Gonnade R.G.; Kontham R. Org. Lett. 2019, 21, 2629.
[71]
Jiang B.; Xiao B.X.; Ouyang Q.; Liang H.P.; Du W.; Chen Y.C. Org. Lett. 2019, 21, 3310.
[72]
Jakkampudi S.; Konda S.; Arman H.; Zhao J.C.G. Adv. Synth. Catal. 2020, 362, 2419.
[73]
Wang S.D.; Guillot R.; Carpentier J.F.; Sarazin Y.; Bour C.; Gandon V.; Lebœuf D. Angew. Chem., Int. Ed. 2020, 59, 1134.
[74]
Miao H.J.; Wang L.L.; Han H.B.; Zhao Y.D.; Wang Q.L.; Bu Z.W. Chem. Sci. 2020, 11, 1418.
[75]
Bai X.G.; Miao, H, J.; Zhao, Y.; Wang, Q.L.; Bu, Z.W.Org. Lett. 202 0, 22, 5068.
[76]
Wang L.L.; Han H.B.; Cui Z.H.; Zhao J.W.; Bu Z.W.; Wang Q.L. Org. Lett. 2020, 22, 873.
[77]
Lachkar D.; Denizot N.; Bernadat G.; Ahamada K.; Beniddir M.A.; Dumontet V.; Gallard J.F.; Guillot R.; Leblanc K.; N’nang E.O.; Turpin V.; Kouklovsky C.; Poupon E.; Evanno L.; Vincent G. Nat. Chem. 2017, 9, 793.
[78]
Li L.; Yuan K.; Jia Q.L.; Jia Y.X. Angew. Chem., Int. Ed. 2019, 58, 6074.
[79]
Tan D.X.; Zhou J.; Liu C.Y.; Han F.S. Angew. Chem., Int. Ed. 2020, 59, 3834.
[80]
Yu Y.Y.; Li G.; Jiang L.; Zuo L.S. Angw. Chem., Int. Ed. 2015, 54, 12627.
Outlines

/