Application of Pinacolborane in Catalytic Enantioselective Hydroboration of Ketones and Imines

  • Liu Wenbo ,
  • Lu Zhan
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou 310000

Received date: 2020-08-21

  Revised date: 2020-09-08

  Online published: 2020-09-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21922107, 21772171), the Natural Science Foundation of Zhejiang Province (No. LR19B020001), the Center of Chemistry for Frontier Technologies and the Fundamental Research Funds for the Central Universities (No. 2019QNA3008).

Abstract

Enantioselective hydroboration of ketones and imines provides a powerful method to access valuable chiral alcohols and amines which are widely used in organic synthesis, materials science, pharmaceutical, agrochemistry and fine chemical industry. After invented in 1991, pinacolborane (HBpin) as a stable, commercially available and measurably simple reductive reagent has been widely applied in hydroboration of carbonyl derivatives, imines and nitriles and relevant mechanistic investigation. In the past 5 years, HBpin has also been employed for asymmetric catalytic hydroboration (CHB) to access chiral alcohols and amines. The enantioselective CHB reactions of ketones and imines using HBpin are outlined according to the classification of different catalysts, such as earth abundant transition metals, main group elements, and rare-earth metals.

Cite this article

Liu Wenbo , Lu Zhan . Application of Pinacolborane in Catalytic Enantioselective Hydroboration of Ketones and Imines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3596 -3604 . DOI: 10.6023/cjoc202008039

References

[1] Marsden, S. Boronic Acids:Preparation and Applications in Organic Synthesis, Medicine and Materials, Vols. 1 and 2, Ed.:Hall, D. G., Wiley-VCH, Weinheim, 2011.
[2] Chong, C. C.; Kinjo, R. ACS Catal. 2015, 5, 3238.
[3] Brown, H. C.; Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1939, 61, 673.
[4] Wang, Z. In Comprehensive Organic Name Reactions and Reagents, Ed.:Wang, Z., John Wiley & Sons, New Jersey, 2010, pp. 536~543.
[5] Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986.
[6] Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482.
[7] Shegavi, M. L.; Bose, S. K. Catal. Sci. Technol. 2019, 9, 3307.
[8] Koren-Selfridge, L.; Londino, H. N.; Vellucci, J. K.; Simmons, B. J.; Casey, C. P.; Clark, T. B. Organometallics 2009, 28, 2085.
[9] Query, I. P.; Squier, P. A.; Larson, E. M.; Isley, N. A.; Clark, T. B. J. Org. Chem. 2011, 76, 6452.
[10] Wu, Y.; Shan, C.; Ying, J.; Su, J.; Zhu, J.; Liu, L. L.; Zhao, Y. Green Chem. 2017, 19, 4169.
[11] Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51, 5725.
[12] Adams, M. R.; Tien, C.-H.; McDonald, R.; Speed, A. W. H. Angew. Chem., Int. Ed. 2017, 56, 16660.
[13] Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed., 2001, 40, 40.
[14] Liu, W.; Guo, J.; Xing, S.; Lu, Z. Org. Lett. 2020, 22, 2532.
[15] Chen, F.; Zhang, Y.; Yu, L.; Zhu, S. Angew. Chem., Int. Ed. 2017, 56, 2022.
[16] Vasilenko, V.; Blasius, C. K.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2017, 56, 8393.
[17] Vasilenko, V.; Blasius, C. K.; Gade, L. H. J. Am. Chem. Soc. 2018, 140, 9244.
[18] Blasius, C. K.; Vasilenko, V.; Gade, L. H. Angew. Chem., Int. Ed. 2018, 57, 10231.
[19] Blasius, C. K.; Heinrich, N. F.; Vasilenko, V. Gade, L. H. Angew. Chem., Int. Ed. 2020, 59, 15974.
[20] Agarwal, R.; Liao, Y.; Lin, D.-J.; Yang, Z.-X.; Lai, C.-F.; Chen, C.-T. Org. Chem. Front. 2020, 7, 2505.
[21] Mukherjee, D.; Osseili, H.; Spaniol, T. P.; Okuda, J. J. Am. Chem. Soc. 2016, 138, 10790.
[22] Willcox, D.; Carden, J. L.; Ruddy, A. J.; Newman, P. D.; Melen, R. L. Dalton Trans. 2020, 49, 2417.
[23] Falconnet, A.; Magre, M.; Maity, B.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 17567.
[24] Vasilenko, V.; Blasius, C. K.; Wadepohl, H.; Gade, L. H. Chem. Commun. 2020, 56, 1203.
[25] Lebedev, Y.; Polishchuk, I.; Maity, B.; Guerreiro, M. D. V.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2019, 141, 19415.
[26] Lundrigan, T.; Welsh, E. N.; Hynes, T.; Tien, C.-H.; Adams, M. R.; Roy, K. R.; Robertson, K. N.; Speed, A. W. H. J. Am. Chem. Soc. 2019, 141, 14083.
[27] Tian, J.-J.; Yang, Z.-Y.; Liang, X.-S.; Liu, N.; Hu, C.-Y.; Tu, X.-S.; Li, X.; Wang, X.-C. Angew. Chem., Int. Ed. 2020, 59, 18452.
[28] Song, P.; Lu, C.; Fei, Z.; Zhao, B.; Yao, Y. J. Org. Chem. 2018, 83, 6093.
[29] Sun, Y.; Lu, C.; Zhao, B.; Xue, M. J. Org. Chem. 2020, 85, 10504.
[30] Zhang, F.-H.; Zhang, F.-G.; Li, M.-L.; Xie, J.-H.; Zhou, Q.-L. Nat. Catal. 2020, 3, 621.
[31] For recent reactions with other boranes:(a) Taniguchi, T.; Curran, D. P. Angew. Chem., Int. Ed. 2014, 53, 13150.
(b) Zhou, N.; Yuan, X.-A.; Zhao, Y.; Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 3990.
(c) Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Angew. Chem., Int. Ed. 2018, 57, 9485.
(d) Yamamoto, K.; Mohara, Y.; Mutoh, Y.; Saito, S. J. Am. Chem. Soc. 2019, 141, 17042.
(e) Dai, W.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2020, 142, 6261.
[32] For selected reviews:(a) Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
(b) Chen, J.; Guo, J.; Lu, Z. Chin. J. Chem. 2018, 36, 1075.
(c) Cheng, Z.; Guo, J.; Lu, Z. Chem. Commun. 2020, 56, 2229.
(d) Li, Y. Y.; Cheng, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese). (李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
(e) Sun, Y.; Guan, R.; Liu, Z. H.; Wang, Y. M. Chin. J. Org. Chem. 2020, 40, 651(in Chinese). (孙越, 关瑞, 刘兆洪, 王也铭, 有机化学, 2020, 40, 651.)
Outlines

/