REVIEWS

Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators

  • Yaqin Zhou ,
  • Zhiheng Zhao ,
  • Liang Zeng ,
  • Ming Li ,
  • Yonghui He ,
  • Lijun Gu
Expand
  • a Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education,School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650500
    b Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025
* Corresponding authors. E-mail: ,

Received date: 2020-07-21

  Revised date: 2020-08-29

  Online published: 2020-09-22

Abstract

Nitrogenous heterocyclic compounds are widely found in medicinal molecules, natural products and functional materials. Therefore, it has great significance to develop simple and efficient methods for the construction of these compounds. Recently, remarkable progress has been made in haloids mediated electrochemical synthesis of nitrogen heterocycles. Due to the relatively mild reaction condition and environmental protection, it provides a novel approach to construct nitrogen heterocycles. In this review, the recent developments in this area are summarized.

Cite this article

Yaqin Zhou , Zhiheng Zhao , Liang Zeng , Ming Li , Yonghui He , Lijun Gu . Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1072 -1080 . DOI: 10.6023/cjoc202007049

References

[1]
(a) Sabbasani, V. R.; Wang, K. P.; Streeter, M. D.; Spiegel, D. A. Angew. Chem. Int. Ed. 2019, 58, 18913.
[1]
(b) Draghici, C.; Wang, T.; Spiegel, D. A. Science 2015, 350, 294.
[1]
(c) Wang, S.; Huang, W.; Zhang, X.; Zhang, X.; Pan, C. Chin. J. Org. Chem. 2020, 40, 959. (in Chinese)
[1]
(王淑琴, 黄婉云, 张小蓉, 张晓婷, 潘成学, 有机化学, 2020, 40, 959.)
[1]
(d) Li, M.; Wang, R.; Hao, W.; Jiang, B. Chin. J. Org. Chem. 2020, 40, 1540. (in Chinese)
[1]
(李梦帆, 王榕, 郝文娟, 姜波, 有机化学, 2020, 40, 1540.)
[1]
(e) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109. (in Chinese)
[1]
(张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
[1]
(f) Sun, Y.; Zhou, L.; Wang, L. Chin. J. Org. Chem. 2019, 39, 3516. (in Chinese)
[1]
(孙悦玮, 周来运, 王兰芝, 有机化学, 2019, 39, 3516.)
[1]
(g) Meng, L.; Wang, Z.-Y. Chin. Chem. Lett. 2013, 24, 780.
[2]
(a) Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
[2]
(b) Liu, Z.; Zhang, Y.-S.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2020, 2020, 1093.
[2]
(c) Sundar, S.; Rengan, R. Org. Biomol. Chem. 2019, 17, 1402.
[2]
(d) Sridevi, B.; Kandimalla, S. R.; Reddy, B. V. S. Eur. J. Org. Chem. 2019, 2019, 6800.
[2]
(e) Rossi, R.; Angelici, G.; Casotti, G.; Manzini, C.; Lessi, M. Adv. Synth. Catal. 2019, 361, 2737.
[2]
(f) Roslan, I. I.; Ng, K.-H.; Jaenicke, S.; Chuah, G.-K. Catal. Sci. Technol. 2019, 9, 1528.
[2]
(g) Parvatkar, P. T.; Manetsch, R.; Banik, B. K. Chem. Asian J. 2019, 14, 6.
[2]
(h) Salfeena, C. T. F.; Jalaja, R.; Davis, R.; Suresh, E.; Somappa, S. B. Acs Omega 2018, 3, 8074.
[2]
(i) Monga, A.; Bagchi, S.; Sharma, A. New J. Chem. 2018, 42, 1551.
[2]
(j) Felipe-Blanco, D.; Gonzalez-Gomez, J. C. Adv. Synth. Catal. 2018, 360, 2773.
[2]
(k) Donthiboina, K.; Namballa, H. K.; Shaik, S. P.; Nanubolu, J. B.; Shankaraiah, N.; Kamal, A. Org. Biomol. Chem. 2018, 16, 1720.
[2]
(l) Chen, X.; Wang, Z.; Huang, H.; Deng, G.-J. Adv. Synth. Catal. 2018, 360, 4017.
[2]
(m) Zhou, X.; Ma, H.; Shi, C.; Zhang, Y.; Liu, X.; Huang, G. Eur. J. Org. Chem. 2017, 2017, 237.
[2]
(n) Tjutrins, J.; Arndtsen, B. A. Chem. Sci. 2017, 8, 1002.
[2]
(o) Sunkari, S.; Shaik, S. P.; Krishna, N. H.; Rao, A. V. S.; Kodiripaka, B. G.; Alarifi, A.; Kamal, A. Asian J. Org. Chem. 2017, 6, 1830.
[2]
(p) Singh, D.; Kumar, V.; Devi, N.; Malakar, C. C.; Shankar, R.; Singh, V. Adv. Synth. Catal. 2017, 359, 1213.
[2]
(q) Saito, A. ARKIVOC 2017,84.
[3]
(a) Leech, M. C.; Lam, K. Acc. Chem. Res. 2020, 53, 121.
[3]
(b) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[3]
(c) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[3]
(d) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[3]
(e) Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[3]
(f) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[4]
(a) Xiong, P.; Xu, H.-H.; Xu, H.-C. J. Am. Chem. Soc. 2017, 139, 2956.
[4]
(b) Yang, Y.-Z.; Wu, Y.-C.; Song, R.-J.; Li, J.-H. Chem. Commun. 2020, 56, 7585.
[4]
(c) Luo, M.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2020, 56, 2707.
[4]
(d) Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He, D.-L. Chem. Commun. 2019, 55, 7251.
[5]
Tang, H.-T.; Jia, J.-S.; Pan, Y.-M. Org. Biomol. Chem. 2020, 18, 5315.
[6]
Chen, J.; Yan, W. Q.; Lam, C. M.; Zeng, C. C.; Hu, L. M.; Little, R. D. Org. Lett. 2015, 17, 986.
[7]
Wang, H.; Shi, J.; Tan, J.; Xu, W.; Zhang, S.; Xu, K. Org. Lett. 2019, 21, 9430.
[8]
Ma, H.-Y.; Zha, Z.-G.; Zhang, Z.-L.; Meng, L.; Wang, Z.-Y. Chin. Chem. Lett. 2013, 24, 780.
[9]
Wang, Z.-Q.; Meng, X.-J.; Li, Q.-Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2018, 360, 4043.
[10]
Mo, S.-K.; Teng, Q.-H.; Pan, Y.-M.; Tang, H.-T. Adv. Synth. Catal. 2019, 361, 1756.
[11]
Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K. Org. Lett. 2018, 20, 2505.
[12]
Yang, N.; Lai, Q.; Jiang, H.; Yuan, G. Electrochem. Commun. 2016, 72, 109.
[13]
Yang, N.; Yuan, G. J. Org. Chem. 2018, 83, 11963.
[14]
Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. Green Chem. 2020, 22, 3416.
[15]
Li, W.-C.; Zeng, C.-C.; Hu, L.-M.; Tian, H.-Y.; Little, R. D. Adv. Synth. Catal. 2013, 355, 2884. 17e3498b-27fb-45af-92dd-31161d3fcee8
[16]
Gao, W.-J.; Li, W.-C.; Zeng, C.-C.; Tian, H.-Y.; Hu, L.-M.; Little, R. D. J. Org. Chem. 2014, 79, 9613.
[17]
Tang, S.; Gao, X.; Lei, A. Chem. Commun. 2017, 53, 3354.
[18]
Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Org. Lett. 2018, 20, 6359.
[19]
Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. J. Org. Chem. 2019, 84, 3148.
[20]
Feng, M.-L.; Li, S.-Q.; He, H.-Z.; Xi, L.-Y.; Chen, S.-Y.; Yu, X.-Q. Green Chem. 2019, 21, 1619.
[21]
Qian, P.; Su, J. H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. J. Org. Chem. 2017, 82, 6434.
[22]
Liang, S.; Zeng, C.-C.; Luo, X.-G.; Ren, F.-z.; Tian, H.-Y.; Sun, B.-G.; Little, R. D. Green Chem. 2016, 18, 2222.
[23]
Liu, K.; Song, C.; Wu, J.; Deng, Y.; Tang, S.; Lei, A. Green Chem. 2019, 21, 765.
[24]
Lv, S.; Han, X.; Wang, J.-Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Angew. Chem. Int. Ed. 2020, 59, 11583.
[25]
Jiang, Y.-Y.; Liang, S.; Zeng, C.-C.; Hu, L.-M.; Sun, B.-G. Green Chem. 2016, 18, 6311.
[26]
Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573.
[27]
Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
[28]
Nikolaienko, P.; Jentsch, M.; Kale, A. P.; Cai, Y.; Rueping, M. Chem.-Eur. J. 2019, 25, 7177.
[29]
Li, Y.; Ye, Z.; Chen, N.; Chen, Z.; Zhang, F. Green Chem. 2019, 21, 4035.
[30]
Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[31]
Herszman, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 7893.
Outlines

/