Chinese Journal of Organic Chemistry >
A Naphthalimide-Based Hypochlorous Acid-Selective Fluorescent Probe and Its Application in Cell Imaging
Received date: 2020-08-06
Revised date: 2020-09-01
Online published: 2020-09-22
Supported by
the Key Laboratory Construction Project of Jilin Province(20190901002JC); the Natural Science Foundation of Jilin Province(20200201169JC); the Innovation Building Projects of Jilin Province(2019C007)
A novel naphthalimide-based fluorescence probe ethyl (E)-3-(2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo- [de]isoquinolin-5-yl)-2-cyanoacrylate (NAEC) containing C=C double bond group with intramolecular charge transfer (ICT) effect for hypochloric acid detection was synthesized, which could selectively and sensitively respond to hypochloric acid within 10 s in phosphate buffer saline (PBS) buffer solution [N,N-dimethylformamide (DMF)/PBS (V∶V=1∶19), pH=7.4]. The mechanism is that the C=C double bond in the probe can be oxidized and turned to aldehyde group, then the original ICT effect of probe is destroyed, and the fluorescence of naphthalimide restores. The spectroscopic properties of the probe NAEC towards ClO– were studied through UV-vis absorption and ?uorescence emission spectroscopies. The results showed that the probe NAEC possessed a large pseudo Stokes shift (100 nm) and the limit of detection (LOD) for NAEC has been estimated to be 2.4 nmol/L. In addition, the probe exhibited good response and anti-interference performance for hypochloric acid in the presence of 22 kinds of interferences, such as other reactive oxygen, small molecule biosulphol and common anions. And probe NAEC exhibited good cell permeability and was successfully applied in living cells by fluorescence imaging. The method is expected to be extended to the diagnosis of diseases and the detection in environmental samples, etc.
Key words: naphthalimide; hypochlorous acid; fluorescence probe; cellular imaging
Xinyu Wang , Shaolong Qi , Jianshi Du , Qiang Li , Lubao Zhu , Longqi Xue , Qing Zhao , Qingbiao Yang , Yaoxian Li , Xianling Cong . A Naphthalimide-Based Hypochlorous Acid-Selective Fluorescent Probe and Its Application in Cell Imaging[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 719 -725 . DOI: 10.6023/cjoc202008005
[1] | Rutala W.A; Weber D.J. Clin. Microbiol. Rev. 1997, 10, 597. |
[2] | Ye Z.; Zhang R.; Song B.; Dai Z.; Jin D.; Goldys E.M.; Yuan J. Dalton Trans. 2014, 43, 8414. |
[3] | Sultana S.; Foti A.; Dahl J.U. Infect. Immun. 2020, 88, e00964- 19. |
[4] | Aiken M.L.; Painter R.G.; Zhou Y.; Wang G. Free Radicals Biol. Med. 2012, 53, 2308. |
[5] | Wu Y.; Wang J.; Zeng F.; Huang S.; Huang J.; Xie H.; Yu C.; Wu S. ACS Appl. Mater. Interfaces 2016, 8, 1511. |
[6] | Guo B.; Nie H.; Yang W.; Tian Y.; Jing J.; Zhang X. Sens. Actuators, B 2016, 236, 459. |
[7] | Yuan L.; Wang L.; Agrawalla B.K.; Park S.J.; Zhu H.; Sivaraman B.; Peng J.; Xu Q.H.; Chang Y.T. J. Am. Chem. Soc. 2015, 137, 5930. |
[8] | Shi D.; Chen S.; Dong B.; Zhang Y.; Sheng C.; James T.D.; Guo Y. Chem. Sci. 2019, 10, 3715. |
[9] | Xing P.; Zhang Z.; Niu Y.; Qi Y.; Dong L.; Wang C. Chem. Commun. 2018, 54, 9889. |
[10] | Pak Y.L.; Park S.J.; Wu D.; Cheon B.; Kim H.M.; Bouffard J.; Yoon J. Angew. Chem., Int. Ed. 2018, 57, 1567. |
[11] | Liu S.; Yang D.; Liu Y.; Pan H.; Chen H.; Qu X.; Li H. Sens. Actuators, B 2019, 299, 126937. |
[12] | Wang J.; Guo J.; Dou L.; Wang R.; Song Y.; Yang Q.; Du J.; Li Y. Chem. Res. Chin. Univ. 2019, 35, 570. |
[13] | Wang J.J.; Qi S.L.; Du J.S.; Yang Q.B.; Song Y.; Li Y.X. Chem. J. Chin. Univ. 2019, 40, 1397. (in Chinese) |
[13] | 王金金, 戚少龙, 杜建时, 杨清彪, 宋岩, 李耀先, 高学校化学学报 2019, 40, 1397.). |
[14] | Cheng G.; Fan J.; Sun W.; Sui K.; Jin X.; Wang J.; Peng X. Analyst 2013, 138, 6091. |
[15] | Duan C.; Won M.; Verwilst P.; Xu J.; Kim H.S.; Zeng L.; Kim J.S. Anal. Chem. 2019, 91, 4172. |
[16] | Yao S.F.; Yao Y.S.; Zheng W.B.; Ye C.Z.; Ying J.; Lü G.L.; Li C.X. Chin. J. Lumin. 2020, 41, 791. (in Chinese) |
[16] | 姚书帆, 尧雨斯, 郑武斌, 叶晨喆, 应杰, 吕光磊, 李春霞, 发光学报, 2020, 41, 791.). |
[17] | Xiong H.; He L.; Zhang Y.; Wang J.; Song X.; Yang Z. Chin. Chem. Lett. 2019, 30, 1075. |
[18] | Setsukinai K.; Urano Y.; Kakinuma K.; Majima H.J.; Nagano T. J. Biol. Chem. 2003, 278, 3170. |
[19] | Gampp H.; Lippard S.J. Inorg. Chem. 1983, 22, 357. |
[20] | Yang Y.-K.; Cho H.J.; Lee J.; Shin I.; Tae J. Org. Lett. 2009, 11, 859. |
[21] | Qi S.L.; Du J.S.; Li R.H.; Li Q.; Zhu L.B.; Shi Y.N.; Wang X.Y.; Yang Q.B.; Zhang G.R.; Li Y.X. Chin. J. Anal. Chem. 2020, 48, 347. (in Chinese) |
[21] | 戚少龙, 杜建时, 李容杭, 李强, 祝录宝, 时亚男, 王欣宇, 杨清彪, 张桂荣, 李耀先, 分析化学, 2020, 48, 347.). |
/
〈 |
|
〉 |