REVIEWS

Recent Advances for Hydration Reaction of Nitriles in Different Catalytic Systems

  • Yujie Xia ,
  • Dandan He ,
  • Wanqing Wu
Expand
  • a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640
    b State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640
* Corresponding author. E-mail:

Received date: 2020-07-07

  Revised date: 2020-09-01

  Online published: 2020-10-12

Supported by

National Natural Science Foundation of China(22071063)

Abstract

Nitriles can be used to construct new carbon-carbon and carbon-hetero bonds which result in diverse products. Among them, amide groups can be found in a large variety of drugs, pesticides, natural products and key intermediates in organic synthesis. Among all the methods reported for the synthesis of amides, hydration reaction of nitriles has become one of the most widely used methods to obtain primary amides in both academia and industry. Conventional nitrile hydration generally involves the use of strong acids and bases which would cause some problems such as low yields, poor reaction selectivity and over hydrolysis of products to carboxylic acids. To overcome these disadvantages, achieve the hydration of nitriles efficiently and meet the requirements of green chemistry, different catalytic systems have been successfully developed, including transition metal complex catalysts, metal cationic catalysts, metal nanoparticle catalysts, ionic liquid catalysts and other types of catalysts. The hydration reaction of nitriles in these catalytic systems is reviewed and summarized, and the development prospect of this field is prospected.

Cite this article

Yujie Xia , Dandan He , Wanqing Wu . Recent Advances for Hydration Reaction of Nitriles in Different Catalytic Systems[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 969 -982 . DOI: 10.6023/cjoc202007020

References

[1]
Song, C.-Y.; Qu, S.-L; Tao, Y.; Dang, Y.-F; Wang, Z.-X. ACS Catal. 2014, 4, 2854. d4bf9322-6a9d-4703-a4a6-93fe27165b27
[2]
Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
[3]
Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
[4]
Mahjour, B.; Shen, Y.; Liu, W.; Cernak, T. Nature 2020, 580, 71.
[5]
García-álvarez, R.; Francos, J.; Tomás-Mendivil, E.; Crochet, P.; Cadierno, V. J. Org. Chem. 2014, 79, 93.
[6]
Wang, Y.; Chen, C.; Zhang, S.; Lou, Z.-B.; Su, X.; Wen, L.-R.; Li, M. Org. Lett. 2013, 15, 4794.
[7]
Ma, B.; Wang, Y.; Peng, J.; Zhu, Q. J. Org. Chem. 2011, 76, 6362.
[8]
Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 10821.
[9]
Tílvez, E.; Menéndez, M. I.; López, R. Organometallics 2012, 31, 1618.
[10]
Lee, J.; Kim, M.; Chang, S.; Lee, H. Y. Org. Lett. 2009, 11, 5598.
[11]
Guo, B.; de Vries, J. G.; Otten, E. Chem. Sci. 2019, 10, 10647.
[12]
Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Coord. Chem. Rev. 2011, 255, 949.
[13]
Kim, J. H. Angew. Chem., Int. Ed. 1990, 29, 523.
[14]
Diomand, S. E.; Grant, B.; Tom, G. M. Tetrahedron Lett. 1974, 15, 4025.
[15]
Murahashi, S. I.; Naota, T. Bull. Agric. Chem. Soc. Jpn. 1996, 69, 1805.
[16]
García-álvarez, R.; Crochet, P.; Cadierno, V. Green Chem. 2013, 15, 46.
[17]
Fung, W. K.; Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau, C. P. J. Am.Chem. Soc. 2003, 125, 11539.
[18]
Cadierno, V.; Diez, J.; Francos, J.; Gimeno, J. Chem.-Eur. J. 2010, 16, 9808.
[19]
García-álvarez, R.; Díez, J.; Crochet, P.; Cadierno, V. Organometallics 2011, 30, 5442.
[20]
Knapp, S. M. M.; Sherbow, T. J.; Yelle, R. B.; Zakharov, L. N.; Juliette, J. J.; Tyler, D. R. Organometallics 2013, 32, 824.
[21]
Tomás-Mendivil, E.; García-álvarez, R.; Vidal, C.; Crochet, P.; Cadierno, V. ACS Catal. 2014, 4, 1901.
[22]
Tomás-Mendivil, E.; Menéndez-Rodríguez, L.; Francos, J.; Crochet, P.; Cadierno, V. RSC Adv. 2014, 4, 63466.
[23]
Geldbach, T. J.; Drago, D.; Pregosin, P. S. Chem. Commun. 2000,1629.
[24]
Geldbach, T. J.; Breher, F.; Gramlich, V.; Kumar, P. G. A.; Pregosin, P. S. Inorg. Chem. 2004, 43, 1920.
[25]
Leung, C. W.; Zheng, W. X.; Wang, D. X.; Ng, S. M.; Yeung, C. H.; Zhou, Z. Y.; Lin, Z. Y.; Lau, C. P. Organometallics 2007, 26, 1924.
[26]
Tomás-Mendivil, E.; Suárez, F. J.; Díez, J.; Cadierno, V. Chem. Commun. 2014, 50, 9661.
[27]
Ghaffar, T.; Parkins, A. W. Tetrahedron Lett. 1995, 36, 8657.
[28]
Xing, X.-Y.; Xu, C.; Chen, B.; Li, C.-C.; Virgil, S. C.; Grubbs, R. H. J. Am. Chem. Soc. 2018, 140, 17782.
[29]
Paul, B.; Maji, M.; Kundu, S. ACS Catal. 2019, 9, 10469.
[30]
Breno, K. L.; Pluth, M. D.; Tyler, D. R. Organometallics 2003, 22, 1203.
[31]
Takaya, H.; Yoshida, K.; Isozaki, K.; Terai, H.; Murahashi, S. Angew. Chem., Int. Ed. 2003, 42, 3302.
[32]
Goto, A.; Endo, K.; Saito, S. Angew. Chem., Int. Ed. 2008, 47, 3607.
[33]
Anderson, N. H.; Boncella, J. M.; Tondreau, A. M. Organometallics 2018, 37, 4675.
[34]
Kim, E. S.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 2973.
[35]
Kim, E. S.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2010, 51, 1589.
[36]
Ma, X.-Y.; He, Y.; Hu, Y.-L.; Lu, M. Tetrahedron Lett. 2012, 53, 449.
[37]
Ma, X.-Y.; He, Y.; Wang, P.-C.; Lu, M. Appl. Organomet. Chem. 2012, 26, 377.
[38]
Ma, X.-Y.; He, Y.; Lu, M. Synth. Commun. 2013, 44, 474.
[39]
Sanz Sharley, D.D.; Williams,, J. M. J. Tetrahedron Lett. 2017, 58, 4090.
[40]
Kanda, T.; Naraoka, A.; Naka, H. J. Am. Chem. Soc. 2019, 141, 825.
[41]
Oberhauser, W.; Bartoli, M.; Petrucci, G.; Bandelli, D. J. Mol. Catal. A: Chem. 2015, 410, 26.
[42]
Mitsudome, T.; Mikami, Y.; Mori, H.; Arita, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2009,3258.
[43]
Woo, H.; Lee, K.; Park, S.; Park, K. H. Molecules 2014, 19, 699.
[44]
Kim, A. Y.; Bae, H. S.; Park, S.; Park, S.; Park, K. H. Catal. Lett. 2011, 141, 685.
[45]
Shimizu, K.-I.; Imaiida, N.; Sawabe, K.; Satsuma, A. Appl. Catal., A. 2012, 421~ 422 , 114.
[46]
Gangarajula, Y.; Gopal, B. Appl. Catal., A 2014, 475, 211.
[47]
Baig, R. B.; Varma, R. S. Chem. Commun. 2012, 48, 6220.
[48]
Yan, N.; Xiao, C.-X.; Kou, Y. Coord. Chem. Rev. 2010, 254, 1179.
[49]
Gong, J. L.; Mullins, C. B. Acc. Chem. Res. 2009, 42, 1063.
[50]
Gladys, M. J.; El Zein, A. A.; Mikkelsen, A.; Andersen, J. N.; Held, G. Surf. Sci. 2008, 602, 3540.
[51]
Pan, M.; Hoang, S.; Mullins, C. B. Catal. Today 2011, 160, 198.
[52]
Shimizu, K.-I.; Kubo, T.; Satsuma, A.; Kamachi, T.; Yoshizawa, K. ACS Catal. 2012, 2, 2467. aff1e2c8-5286-43fd-b6b9-837d53bc53bf
[53]
Sherbow, T. J.; Downs, E. L.; Sayler, R. I.; Razink, J. J.; Juliette, J. J.; Tyler, D. R. ACS Catal. 2014, 4, 3096.
[54]
Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C. J. Chem. Educ. 2007, 84, 322.
[55]
Liu, Y.-M.; He, L.; Wang, M.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. ChemSusChem 2012, 5, 1392.
[56]
Kumar, S.; Sharma, S.; Das, P. Adv. Synth. Catal. 2016, 358, 2889.
[57]
Mehta, A.; Basu, S. J. Photochem. Photobiol., A 2017, 343, 1.
[58]
Wang, H.; Wang, Y.-Q.; Xu, H.; Zhou, H.; Wang, L.; Meng, X.-J.; Xiao, F.-S. Ind. Eng. Chem. Res. 2019, 58, 17319.
[59]
Goossens, K.; Lava, K.; Bielawski, C. W.; Binnemans, K. Chem. Rev. 2016, 116, 4643.
[60]
Rantwijk, F. V.; Sheldon, R. A. Chem. Rev. 2007, 107, 2757.
[61]
Han, X. X.; Armstrong, D. W. Acc. Chem. Res. 2007, 40, 1079.
[62]
Veisi, H.; Manesh, A. A.; Khankhani, N.; Ghorbani-Vaghei, R. RSC Adv. 2014, 4, 25057.
[63]
Earle, M. J.; Esperanca, J. M.; Gilea, M. A.; Lopes, J. N.; Rebelo, L. P.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature 2006, 439, 831.
[64]
Dong, K.; Liu, X.-M.; Dong, H.-F.; Zhang, X.-P.; Zhang, S.-J. Chem. Rev. 2017, 117, 6636.
[65]
Kalkhambkar, R. G.; Waters, S. N.; Laali, K. K. Tetrahedron Lett. 2011, 52, 867.
[66]
Kumar, S.; Dixit, S. K.; Awasthi, S. K. Tetrahedron Lett. 2014, 55, 3802.
[67]
Veisi, H.; Maleki, B.; Hamelian, M.; Ashrafi, S. S. RSC Adv. 2015, 5, 6365.
[68]
Dutta, A.; Damarla, K.; Kumar, A.; Saikia, P. J.; Sarma, D. Tetrahedron Lett. 2020, 61, 151587.
[69]
Tu, T.; Wang, Z.-X.; Liu, Z. L.; Feng, X.-K.; Wang, Q.-Y. Green Chem. 2012, 14, 921.
[70]
Chen, H.-N.; Dai, W.-J.; Chen, Y.; Xu, Q.; Chen, J.-H.; Yu, L.; Zhao, Y.-J.; Ye, M.-D.; Pan, Y.-J. Green Chem. 2014, 16, 2136.
[71]
Midya, G. C.; Kapat, A.; Maiti, S.; Dash, J. J. Org. Chem. 2015, 80, 4148.
[72]
Chitale, S.; Derasp, J. S.; Hussain, B.; Tanveer, K.; Beauchemin, A. M. Chem. Commun. 2016, 52, 13147.
Outlines

/