REVIEWS

Application of Flow Chemistry in Halogenation

  • Ding Liu ,
  • Yuanyuan Zhu ,
  • Shuangxi Gu ,
  • Fener Chen
Expand
  • a Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology, Wuhan 430205
    b Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205
    c School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205
    d Department of Chemistry, Fudan University, Shanghai 200433
* Corresponding authors. E-mail: ;

Received date: 2020-07-22

  Revised date: 2020-09-14

  Online published: 2020-10-12

Supported by

National Natural Science Foundation of China(21877087); National Natural Science Foundation of China(21602164); Open Fund of Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology)(K202004)

Abstract

The halogenation of organic compounds is one of the most important transformations in organic synthesis. However, there are some problems in traditional batch halogenation, such as high exothermicity, poor selectivity and the use of highly toxic and corrosive halogenating agents. Flow chemistry has its unique advantages such as high mixing efficiency, fast heat and mass transfer performance, accurate control over process parameters and enhanced process safety, reduced energy input and so on. According to the classification of halogenation of organic compounds, the main progress of flow chemistry in fluorination, chlorination, bromination and iodization is summarized systematically, and its development trend is prospected.

Cite this article

Ding Liu , Yuanyuan Zhu , Shuangxi Gu , Fener Chen . Application of Flow Chemistry in Halogenation[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1002 -1011 . DOI: 10.6023/cjoc202007051

References

[1]
(a) Neumann, C. S.; Fujimori, D. G.; Walsh, C. T. Chem. Biol. 2008, 15, 99.
[1]
(b) Lin, R.; Amrute, A. P.; Perez-Ramirez, J. Chem. Rev. 2017, 117, 4182.
[2]
Veisi, H.; Ghorbani-Vaghei, R. Tetrahedron 2010, 66, 7445. a93eb088-c6ab-4c5f-86de-ec0c1dd77d13
[3]
Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
[4]
Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47, 4583.
[5]
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
[6]
(a) Suryawanshi, P. L.; Gumfekar, S. P.; Bhanvase, B. A.; Sonawane, S. H.; Pimplapure, M. S. Chem. Eng. Sci. 2018, 189, 431.
[6]
(b) Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Renewable Sustainable Energy Rev. 2015, 47, 519.
[6]
(c) Pennemann, H.; Hessel, V.; L?we, H. Chem. Eng. Sci. 2004, 59, 4789.
[7]
(a) Cheng, D; Chen, F. Chem. Ind. Eng. Prog. 2019, 38, 556. (in Chinese)
[7]
(程荡, 陈芬儿, 化工进展, 2019, 38, 556.)
[7]
(b) Porta, R.; Benaglia, M.; Puglisi, A. Org. Process Res. Dev. 2016, 20, 2.
[7]
(c) Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem.. Int. Ed. Engl. 2015, 54, 6688.
[8]
(a) Yu, T.; Ding, Z.; Nie, W.; Jiao, J.; Zhang, H.; Zhang, Q.; Xue, C.; Duan, X.; Yamada, Y. M. A.; Li, P. Chem.-Eur. J. 2020, 26, 5729.
[8]
(b) Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein J. Org. Chem. 2009, 5, 19.
[9]
(a) Colella, M.; Carlucci, C.; Luisi, R. Top. Curr. Chem. 2018,376.
[9]
(b) Yu, T.; Jiao, J.; Song, P.; Nie, W.; Li, P. ChemSusChem 2020.
[9]
(c) Tanimu, A.; Jaenicke, S.; Alhooshani, K. Chem. Eng. J. 2017, 327, 792.
[10]
Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. Angew. Chem., Int. Ed. 2012, 51, 4144.
[11]
(a) Atobe, M.; Tateno, H.; Matsumura, Y. Chem. Rev. 2018, 118, 4541.
[11]
(b) Tien, T. T.; Luu, T. L. Environ. Eng. Res. 2020, 25, 324.
[12]
(a) Movsisyan, M.; Delbeke, E. I.; Berton, J. K.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892.
[12]
(b) Gao,, Y..; Wang,, J. Chin. J. Org. Chem. 2018, 38, 1275. (in Chinese)
[12]
(郜云鹏; 王剑波, 有机化学, 2018, 38, 1275.)
[13]
Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; Mcquade, D. T. Chem. Rev. 2007, 107, 2300.
[14]
(a) Illg, T.; Lob, P.; Hessel, V. Bioorg. Med. Chem. 2010, 18, 3707.
[14]
(b) Bogdan, A. R.; Dombrowski, A. W. J. Med. Chem. 2019, 62, 6422.
[15]
(a) Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39, 2726. (in Chinese)
[15]
(陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39, 2726.)
[15]
(b) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109. (in Chinese)
[15]
(张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
[15]
(c) Zhu, Y.-Y.; Wu, X.-D.; Abed, M.; Gu, S.-X.; Pu, L. Chem.-Eur. J. 2019, 25, 7866.
[16]
(a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
[16]
(b) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785. (in Chinese)
[16]
(王江, 柳红, 有机化学, 2011, 31, 1785.)
[17]
(a) Campbell, M. G.; Ritter, T. Org. Process Res. Dev. 2014, 18, 474.
[17]
(b) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[17]
(c) Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737.
[18]
(a) Ma, J. A.; Cahard, D. Chem. Rev. 2004, 104, 6119.
[18]
(b) Shimizu, M.; Hiyama, T. Angew. Chem.. Int. Ed. 2004, 44, 214.
[18]
(c) Richardson, P. Expert. Opin. Drug Discovery 2016, 11, 983.
[18]
(d) Zeng, L.; Mao, M.; Wang, L.; Zhang, X.; Ning, B. Fine Chem. 2019, 36, 549. (in Chinese)
[18]
(曾丽媛, 毛明珍, 王伦, 张晓光, 宁斌科, 精细化工, 2019, 36, 549.)
[19]
Chambers, R. D.; Spink, R. C. H. Chem. Commun 1999,883.
[20]
Chambers, R. D.; Hutchinson, J.; Sparrowhawka, M. E.; Sandforda, G.; Moilliet, J. S.; Thomson, J. J. Fluorine Chem. 2000, 102, 169.
[21]
Chambers, R. D.; Sandford, G.; Trmcic, J.; Okazoe, T. Org. Process Res. Dev. 2008, 12, 339.
[22]
Elgue, S.; Conte, A.; Gourdon, C.; Bastard, Y. Chim. Oggi 2012, 30, 18.
[23]
Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V. Tetrahedron 2009, 65, 6611.
[24]
Nagaki, A.; Uesugi, Y.; Kim, H.; Yoshida, J. Chem.-Asian J. 2013, 8, 705.
[25]
Naumann, K. Pest Manage. Sci. 2000, 56, 3.
[26]
Schmittinger, P.; Florkiewicz, T.; Curlin, L. C.; Lüke, B.; Scannell, R. ; Navin. T.; Zelfel, E.; Bartsch, R. Chlorine in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, 2001.
[27]
Strauss, F. J.; Cantillo, D.; Guerra, J.; Kappe, C. O. React. Chem. Eng. 2016, 1, 472.
[28]
Blacker, A. J.; Jolley, K. E. Beilstein J. Org. Chem. 2015, 11, 2408.
[29]
Movsisyan, M.; Heugebaert, T. S. A.; Roman, B. I.; Dams, R.; Van Campenhout, R.; Conradi, M.; Stevens, C. V. Chem.-Eur. J. 2018, 24, 11779.
[30]
Reichart, B.; Tekautz, G.; Kappe, C. O. Org. Process Res. Dev. 2012, 17, 152.
[31]
Borukhova, S.; No?l, T.; Hessel, V. Org. Process Res. Dev. 2016, 20, 568.
[32]
Fukuyama, T.; Tokizane, M.; Matsui, A.; Ryu, I. React. Chem. Eng. 2016, 1, 613.
[33]
Matsubara, H.; Hino, Y.; Tokizane, M.; Ryu, I. Chem. Eng. J. 2011, 167, 567.
[34]
(a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
[34]
(b) Groweiss, A. Org. Process Res. Dev. 2000, 4, 30.
[34]
(c) Steiner, A.; Williams, J. D.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Kappe, C. O. Green Chem. 2020, 22, 448.
[35]
L?b, P.; Hessel, V.; Klefenz, H. Lett. Org. Chem. 2005, 2, 767.
[36]
(a) L?b, P.; L?we, H.; Hessel, V. J. Fluorine Chem. 2004, 125, 1677.
[36]
(b) Becker, R.; van den Broek, S. A. M. W.; Nieuwland, P. J.; Koch, K.; Rutjes, F. P. J.T. J. Flow Chem. 2012, 2, 87.
[37]
Fukuyama, T.; Rahman, M. T.; Kamata, N.; Tokizane, M.; Fukuda, Y.; Ryu, I. J. Flow Chem. 2013, 3, 4.
[38]
Van, Waes, F. E. A.; Seghers,, S.; Dermaut,, W.; Cappuyns,, B.; Stevens,, C. V. J. Flow Chem. 2014, 4, 118.
[39]
Manabe, Y.; Kitawaki, Y.; Nagasaki, M.; Fukase, K.; Matsubara, H.; Hino, Y.; Fukuyama, T.; Ryu, I. Chem.-Eur. J. 2014, 20, 12750.
[40]
Deng, Q.; Shen, R.; Ding, R.; Zhang, L. Chem. Eng. Technol. 2016, 39, 1445.
[41]
Zhang, Y.; Guo, X.; Yan, S.; Liu, J.; Shen, J. Spec. Petrochem. 2013, 30, 58. (in Chinese)
[41]
(张跃, 郭欣桐, 严生虎, 刘建武, 沈介发, 精细石油化工, 2013, 30, 58.)
[42]
O’Brien, M.; Cooper, D. Synlett 2015, 27, 164.
[43]
?terk, D.; Juki?, M.; ?asar, Z. Org. Process Res. Dev. 2013, 17, 145.
[44]
Cantillo, D.; Kappe, C. O. React. Chem. Eng. 2017, 2, 7.
[45]
Midorikawa, K.; Suga, S.; Yoshida, J. Chem. Commun. 2006,3794.
[46]
Slocum, D. W.; Tekin, K. C.; Nguyen, Q.; Whitley, P. E.; Reinscheld, T. K.; Fouzia, B. Tetrahedron Lett. 2011, 52, 7141.
[47]
D'Attoma, J.; Cozien, G.; Brun, P. L.; Robin, Y.; Bostyn, S.; Buron, F.; Routier, S. ChemistrySelect 2016, 1, 338.
[48]
Ferreri, M.; Drageset, A.; Gambarotti, C.; Bj?rsvik, H.-R. React. Chem. Eng. 2016, 1, 379.
Outlines

/