Article

Microwave-Assisted Synthesis of Perylene Monoimide Derivatives

  • Ya'nan Wang ,
  • Chong Wang ,
  • Yuming Qi ,
  • Guokai Li ,
  • Xiaoliu Li ,
  • Kerang Wang
Expand
  • 1 Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002

Received date: 2020-08-09

  Revised date: 2020-09-27

  Online published: 2020-10-15

Supported by

the National Natural Science Foundation of China(21572044); the National Natural Science Foundation of China(21778013); and the Foundation of the Department of Science and Technology of Hebei Province(19241303D)

Abstract

A fast and efficient method for the synthesis of aromatic amine modified perylene monoimide derivatives based on microwave-assisted reaction was developed. It is found that the amount of 2,6-diisopropylaniline showed very important influences on the synthetic yield. N-2',6'-Diisopropylanilino-3,4-perylene monoimide (PMI-1) was obtained with the isolated yield of 64.1% under the optimized condition of 7 equiv. of 2,6-diisopropylaniline at 170 ℃ and 80 W for 30 min.

Cite this article

Ya'nan Wang , Chong Wang , Yuming Qi , Guokai Li , Xiaoliu Li , Kerang Wang . Microwave-Assisted Synthesis of Perylene Monoimide Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 702 -707 . DOI: 10.6023/cjoc202008010

References

[1]
Weil T.; Vosch T.; Hofkens J.; Peneva K.; Müllen K. Angew. Chem. Int. Ed. 2010, 49, 9068.
[2]
Bell T. D. M.; Stefan A.; Lemaur V.; Bernhardt S.; Müllen K.; Cornil J.; Beljonne D.; Hofkens J.; der Quweraer M.V.; Schryver F.C. D. Photochem. Photobiol. Sci. 2007, 6, 406.
[3]
(a) Sekita M.; Jiménez á.J.; Marcos M.L.; Caballero E.; Rodríguez-Morgade M.S.; Guldi D.M.; Torres T. Chem. - Eur. J. 2015, 21, 19028.
[3]
(b) Bolag A.; Sakai N.; Matile S. Chem. - Eur. J. 2016, 22, 9006.
[3]
(c) Cheriya R.T.; Joy J.; Alex A.P.; Shaji A.; Hariharan M. J. Phys. Chem. C 2012, 116, 12489.
[3]
(d) Li C.; Yan H.; Zhang G.F.; Gong W.L.; Chen T.; Hu R.; Aldred M.P.; Zhu M.Q. Chem. - Asian J. 2014, 9, 104.
[4]
Lewandowska U.; Zajaczkowski W.; Pisula W.; Ma Y.; Li C.; Müllen K.; Wennemers H. Chem. - Eur. J. 2016, 22, 3804.
[5]
Warnan J.; Willkomm J.; Farré Y.; Pellegrin Y.; Boujtita M.; Odobel F.; Reisner E. Chem. Sci. 2019, 10, 2758.
[6]
Kaloyanova S.; Zagranyarski Y.; Ritz S.; Hanulov? M.; Koynov K.; Vonderheit A.; Müllen K.; Peneva K. J. Am. Chem. Soc. 2016, 138, 2881.
[7]
Quante H.; Müllen K. Angew. Chem. Int. Ed. Engl. 1995, 34, 1323.
[8]
(a) Hutchison J.A.; Uji-I H.; Deres A.; Vosch T.; Rocha S.; Müller S.; Bastian A.A.; Enderlein J.; Nourouzi H.; Li C.; Herrmann A.; Müllen K.; Schryver F.D.; Hofkens J. Nat. Nanotechnol. 2014, 9, 131.
[8]
(b) Chen L.; Li C.; Müllen K. J. Mater. Chem. C 2014, 2, 1938.
[8]
(c) Schmaltz B.; Weil T.; Müllen K. Adv. Mater. 2009, 21, 1067.
[8]
(d) Berberich M.; Würthner F. Chem. Sci. 2012, 3, 2771.
[8]
(e) Chen L.; Li C.; Müllen K. J. Mater. Chem. C 2014, 2, 1938.
[8]
(f) Schmaltz B.; Weil T.; Müllen K. Adv. Mater. 2009, 21, 1067.
[8]
(g) Berberich M.; Würthner F. Chem. Sci. 2012, 3, 2771.
[9]
Feiler L.; Langhals H.; Polborn K. Liebigs Ann. 1995, 1229.
[10]
(a) Cheriya R.T.; Joy J.; Alex A.P.; Shaji A.; Hariharan; M. J. Phys. Chem. C 2012, 116, 12489.
[10]
(b) Li C.; Yan H.; Zhang G.F.; Gong W.L.; Chen T.; Hu R.; Aldred M.P.; Zhu M.Q. Chem. - Asian J. 2014, 9, 104.
[10]
(c) Wei H.; Jiang N.; Zhao N.; Zhang Y.; Gao B. Chin. J. Chem. 2014, 32, 356.
[11]
Langhals H.; von Unold P.; Speckbacher M. Liebigs Ann./Recl. 1997, 467.
[12]
Geerts Y.; Quante H.; Platz H.; Mahrt R.; Hopmeier M.; B?hm A.; Müllen K. J. Mater. Chem. 1998, 8, 2357.
[13]
(a) Tr?ster H. Dyes Pigm. 1983, 4, 171.
[13]
(b) Tam-Chang S.W.; Seo W.; Iverson I.K. J. Org. Chem. 2004, 69, 2719.
[13]
(c) Huang L.; Catalano V.J.; Tam-Chang S.W. Chem. Commun. 2007, 2016.
[14]
Chen L.; Zhang K.; Zhu L.; Xiao Y. Ind. Eng. Chem. Res. 2015, 54, 12699.
[15]
(a) Yi X.; Zhang Z.; Huang H. Baell J.B.; Yu Y.; Huang F. Chin. J. Org. Chem. 2019, 39, 544. (in Chinese)
[15]
易享炎, 张志鹏, 黄和, Jonathan B. Baell, 于杨, 黄菲, 有机化学, 2019, 39, 544.).
[15]
(b) Yan X.; Li J.; Zhang Q.; Shi D. Chin. J. Org. Chem. 2017, 37, 1450. (in Chinese)
[15]
闫小惠, 李加荣, 张奇, 史大昕, 有机化学, 2017, 37, 1450.).
[15]
(c) Roberts B.A.; Strauss C.R. Acc. Chem. Res. 2005, 38, 653.
[16]
Rigodanza F.; Tenori E.; Bonasera A.; Syrgiannis Z.; Prato M. Eur. J. Org. Chem. 2015, 5060.
[17]
Pengo P.; Pantos G.D.; Otto S.; Sanders J. K. M. J. Org. Chem. 2006, 71, 7063.
[18]
Tambara K.; Ponnuswamy N.; Hennrich G.; Panto? G.D. J. Org. Chem. 2011, 76, 3338.
[19]
Sekita M.; Jiménez á.J.; Marcos M.L.; Caballero E.; Rodríguez-Morgade M.S.; Guldi D.M.; Torres T. Chem. - Eur. J. 2015, 21, 19028.
[20]
Chen Z.; Stepanenko V.; Dehm V.; Prins P.; Siebbeles L. D. A.; Seibt J.; Marquetand P.; Engel V.; Würthner F. Chem. - Eur. J. 2007, 13, 436.
Outlines

/