REVIEWS

Ring Expansions of Oxetanes

  • Wenhao Yuan ,
  • Jiaxi Xu
Expand
  • 1 State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
* Corresponding author. E-mail:

Received date: 2020-08-25

  Revised date: 2020-09-22

  Online published: 2020-10-15

Supported by

National Natural Science Foundation of China(21772010)

Abstract

Oxetanes are a class of important small heterocycles and intermediates in organic synthesis and have been widely applied in organic, pharmaceutical and polymer chemistries. As small heterocycles with a large ring tension, oxetanes not only prefer ring-opening reactions, but also favor ring expansions, to construct oxygen-containing common to large heterocyclic compounds. The ring expansion reactions of oxetanes, including the ring expansions with diazo compounds as carbene precursors, the metal catalyzed intermolecular cycloadditions and the intramolecular cycloadditions involving neighboring group participation, the nucleophilic ring expansion and so on are reviewed. Some reaction mechanisms of ring expansion reactions are analyzed, and new prospects for the future development of the ring expansion reactions are put forward.

Cite this article

Wenhao Yuan , Jiaxi Xu . Ring Expansions of Oxetanes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 947 -958 . DOI: 10.6023/cjoc202008046

References

[1]
Burkhard, J.A., Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 9052.
[2]
Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F. Chem. Rev. 2016, 116, 12150.
[3]
Ma, L. G.; Xu, J. X. Prog. Chem 2004, 16, 220. (in Chinese)
[3]
(马琳鸽, 许家喜, 化学进展, 2004, 16, 220).
[4]
Zhou, C.; Xu, J. X. Prog. Chem 2011, 23, 174. (in Chinese)
[4]
(周婵, 许家喜, 化学进展, 2011, 23, 174).
[5]
Zhou, C.; Xu, J. X. Prog. Chem 2012, 24, 338. (in Chinese)
[5]
(周婵, 许家喜, 化学进展, 2012, 24, 338).
[6]
Xu, C.; Xu, J. X. J. Org. Chem. 2018, 83, 14733.
[7]
Li, S. Q.; Shi, Y.; Li, P. F.; Xu, J. X. J. Org. Chem. 2019, 84, 4443.
[8]
Chen, X. P.; Lin, C.; Du, H. G.; Xu, J. X. Adv. Synth. Catal. 2019, 361, 1647.
[9]
Dong, J.; Du, H. G.; Xu, J. X. J. Org. Chem. 2019, 84, 10724.
[10]
Shi, Y.; Li, S. Q.; Lu, Y.; Zhao, Z. Z.; Li, P. F.; Xu, J. X. Chem. Commun. 2020, 56, 2131.
[11]
Chen, X. P.; Xu, J. X. Prog. Chem 2017, 29, 181. (in Chinese)
[11]
(陈兴鹏, 许家喜, 化学进展, 2017, 29, 181).
[12]
Li, S. Q.; Xu, J. X. Prog. Chem. 2016, 28, 1798. (in Chinese)
[12]
(李思琦, 许家喜, 化学进展, 2016, 28, 1798).
[13]
Xu, W.; Xu, J. X. Curr. Org. Synth. 2016, 13, 73.
[14]
Xu, J. X. Top. Heterocycl. Chem. 2016, 41, 311.
[15]
Malapit, C. A.; Howell, A. R. J. Org. Chem. 2015, 80, 8489.
[16]
Mack, D. J.; Njardarson, J. T. ACS Catal. 2013, 3, 272.
[17]
Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron Lett. 1966, 7, 5239.
[18]
Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655.
[19]
Ito, K.; Katsuki, T. Chem. Lett. 1994, 23, 1857.
[20]
Ito, K.; Yoshitake, M.; Katsuki, T. Chem. Lett. 1995, 24, 1027.
[21]
Katsuki, T.; Ito, K.; Yoshitake, M. Heterocycles 1996, 42, 305.
[22]
Ito, K.; Yoshitake, M.; Katsuki, T. Tetrahedron 1996, 52, 3905.
[23]
Ito, K.; Fukuda, T.; Katsuki, T. Synlett 1997,387.
[24]
Katsuki, T.; Ito, K.; Fukuda, T. Heterocycles 1997, 46, 401.
[25]
Lo, M. M.; Fu, G. C. Tetrahedron 2001, 57, 2621.
[26]
Mack, D. J.; Batory, L. A.; Njardarson, J. T. Org. Lett. 2012, 14, 378.
[27]
Jana, S.; Yang, Z.; Pei, C.; Xu, X.; Koenigs, R. M. Chem. Sci. 2019, 10, 10129.
[28]
Egger, L.; Guenee, L.; Burgi, T.; Lacour, J. Adv. Synth. Catal. 2017, 359, 2918.
[29]
Rix, D.; Ballesteros-Garrido, R.; Zeghida, W.; Besnard, C.; Lacour, J. Angew. Chem., Int. Ed. 2011, 50, 7308.
[30]
Kitamura, M.; Kisanuki, M.; Kanemura, K.; Okauchi, T. Org. Lett. 2014, 16, 1554.
[31]
Harmon, R. E.; Stanley, F.; Gupta, S. K.; Johnson, J. J. Org. Chem. 1970, 35, 3444.
[32]
Guarnieri-Ibanez, A.; Medina, F.; Besnard, C.; Kidd, S. L.; Spring, D. R.; Lacour, J. Chem. Sci. 2017, 8, 5713.
[33]
Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 4152.
[34]
Hudrlik, P. F.; Wan, C. J. Org. Chem. 1975, 40, 2963.
[35]
Posner, G. H.; Hatcher, M. A.; Maio, W. A. Org. Lett. 2005, 7, 4301.
[36]
Pawar, S. K.; Vasu, D.; Liu, R. Adv. Synth. Catal. 2014, 356, 2411.
[37]
Sahani, R. L.; Liu, R. Chem. Commun. 2016, 52, 7482.
[38]
Wang, Y.; Yang, L.; Rong, Z.; Liu, T.; Liu, R.; Zhao, Z. Angew. Chem., Int. Ed. 2018, 57, 1596.
[39]
Xu, H.; Khan, S.; Li, H.; Wu, X.; Zhang, Y. J. Org. Lett. 2019, 21, 214.
[40]
Punna, N.; Das, P.; Gouverneur, V.; Shibata, N. Org. Lett. 2018, 20, 1526.
[41]
Das, P.; Gondo, S.; Nagender, P.; Uno, H.; Tokunaga, E.; Shibata, N. Chem. Sci. 2018, 9, 3276.
[42]
Uno, H.; Imai, T.; Harada, K.; Shibata, N. ACS Catal. 2020, 10, 1454.
[43]
Guo, B.; Schwarzwalder, G.; Njardarson, J. T. Angew. Chem., Int. Ed. 2012, 51, 5675.
[44]
Gronnier, C.; Kramer, S.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2012, 134, 828.
[45]
Dong, J.; Xu, J. Org. Biomol. Chem. 2017, 15, 836.
[46]
Baba, A.; Kashiwagi, H.; Matsuda, H. Tetrahedron Lett. 1985, 26, 1323.
[47]
Baba, A.; Shabata, I.; Fujiwara, M.; Matsuda, H. Tetrahedron Lett. 1985, 26, 5167.
[48]
Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics 1987, 6, 137.
[49]
Shibata, I.; Imoto, T.; Baba, A.; Matsuda, H. J. Heterocycl. Chem. 1987, 24, 316.
[50]
Fujiwara, M.; Imoto, T.; Baba, A.; Matsuda, H. J. Org. Chem. 1988, 53, 5975.
[51]
Darensbourg, D. J.; Ganguly, P.; Choi, W. Inorg. Chem. 2006, 45, 3831.
[52]
Darensbourg, D. J.; Moncada, A. I.; Choi, W.; Reibenspies, J. H. J. Am. Chem. Soc. 2008, 130, 6523.
[53]
Darensbourg, D. J.; Moncada, A. I. Macromolecules 2009, 42, 4063.
[54]
Darensbourg, D. J.; Moncada, A. I. Macromolecules 2010, 43, 5996.
[55]
Darensbourg, D. J.; Horn, A. Jr.; Moncada, A. I. Green Chem. 2010, 12, 1376.
[56]
Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012, 354, 469.
[57]
Whiteoak, C. J.; Kielland, N.; Laserna, V.; Escudero-Adan, E. C.; Martin, E.; Kleij, A. W. J. Am. Chem. Soc. 2013, 135, 1228.
[58]
Rintjema, J.; Guo, W.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. Chem.-Eur. J. 2015, 21, 10754.
[59]
Buckley, B. R.; Patel, A. P.; Wijayantha, K. G. Eur. J. Org. Chem. 2015, 3, 474.
[60]
Chen, F.; Liu, N.; Dai, B. ACS Sustainable Chem. Eng. 2017, 5, 9065.
[61]
Liu, N.; Xie, Y.; Wang, C.; Li, S.; Wei, D.; Li, M.; Dai, B. ACS Catal. 2018, 8, 9945.
[62]
Butova, E. D.; Barabash, A. V.; Petrova, A. A.; Kleiner, C. M.; Schreiner, P. R.; Fokin, A. A. J. Org. Chem. 2010, 75, 6229.
[63]
Xu, S.; Takamatsu, K.; Hirano, K.; Miura, M. Chem.-Eur. J. 2019, 25, 9400.
Outlines

/