Article

Efficient Copper-Catalyzed Domino Synthesis of Phosphonated Isoquinolin-1(2H)-ones Using Cyanomethylphosphonates as Building Blocks

  • Suyan Zhao ,
  • Xueqin Gong ,
  • Ziyu Gan ,
  • Qiuli Yan ,
  • Xueliang Liu ,
  • Daoshan Yang
Expand
  • a Experimental Technology Center, Jilin Police College, Changchun 130117
    b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
    c School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165
    d Basic Medical College, Xinxiang Medical University, Xinxiang, Henan 453003

Received date: 2020-08-25

  Revised date: 2020-10-18

  Online published: 2020-10-22

Supported by

the Natural Science Foundation of Shandong Province(ZR2016JL012); the Scientific Research Foundation of Qingdao University of Science and Technology.()

Abstract

An efficient and convenient copper-catalyzed cascade synthesis of C-4 phosphonated isoquinolin-1(2 H)-ones has been initially proposed. This is the first example for the construction of phosphine-containing heterocycles through copper-catalyzed Ullmann-type coupling reactions using cyanomethylphosphonates as the building blocks, and it will broaden the strategies of organophosphorus synthesis in the field of organic and pharmaceutical chemistry.

Cite this article

Suyan Zhao , Xueqin Gong , Ziyu Gan , Qiuli Yan , Xueliang Liu , Daoshan Yang . Efficient Copper-Catalyzed Domino Synthesis of Phosphonated Isoquinolin-1(2H)-ones Using Cyanomethylphosphonates as Building Blocks[J]. Chinese Journal of Organic Chemistry, 2021 , 41(1) : 258 -266 . DOI: 10.6023/cjoc202008045

References

[1]
(a) Ratnayake R.; Lacey E.; Tennant S.; Gill J.H.; Capon R.J. Chem. -Eur. J. 2007, 13, 1610.
[1]
(b) Billamboz M.; Bailly F.; Lion C.; Touati N.; Vezin H.; Calmels C.; Andreóla M.-L.; Christ F.; Debyser Z.; Cotelle P. J. Med. Chem. 2011, 54, 1812.
[1]
(c) Dickinson R.P.; Bell A.W.; Hitchcock C.A.; Narayana-Swami S.; Ray S.J.; Richardson K.; Troke P.F. Bioorg. Med. Chem. Lett. 1996, 6, 2031.
[1]
(d) Jatav V.; Mishra P.; Kashaw S.; Stables J.P. Eur. J. Med. Chem. 2008, 43, 135.
[1]
(e) Glushkov V.A.; Shklyaev Y.V. Chem. Heterocycl. Compd. 2001, 37, 66.
[2]
(a) Kashaw S.K.; Gupta V.; Kashaw V.; Mishra P.; Stables J.P.; Jain N.K. Med. Chem. Res. 2010, 19, 250.
[2]
(b) Wang Z.; He W.-M. Chin. J. Org. Chem. 2019, 39, 3594. (in Chinese)
[2]
( 王峥, 何卫民, 有机化学, 2019, 39, 3594.).
[2]
(c) Li X.-L.; Wang J.-Q.; Li L.; Yin Y.-W.; Ye L.-W. Acta Chim. Sinica 2016, 74, 49. (in Chinese)
[2]
( 李新玲, 王佳琪, 李龙, 尹应武, 叶龙武, 化学学报, 2016, 74, 49.).
[3]
(a) Horsman G.P.; Zechel D.L. Chem. Rev. 2017, 117, 5704.
[3]
(b) Gahungu M.; Arguelles-Arias A.; Fickers P.; Zervosen A.; Joris B.; Damblon C.; Luxen A. Bioorg. Med. Chem. 2013, 21, 4958.
[3]
(c) Tang W.; Zhang X. Chem. Rev. 2003, 103, 3029.
[3]
(d) Bhattacharya A.K.; Thyagarajan G. Chem. Rev. 1981, 81, 415.
[3]
(e) Kirumakki S.; Huang J.; Subbiah A.; Yao J.; Rowland A.; Smith B.; Mukherjee A.; Samarajeewa S.; Clearfield A. J. Mater. Chem. 2009, 19, 2593.
[3]
(f) Krylov S.; Kashemirov B.A.; Hilfinger J.M.; McKenna C.E. Mol. Pharmaceutics 2013, 10, 445.
[3]
(g) Qiao B.; Cao H.-Q.; Huang Y.-J.; Zhang Y.; Nie J.; Zhang F.-G.; Ma J.-A. Chin. J. Chem. 2018, 36, 809.
[4]
(a) Schlummer B.; Scholz U. Adv. Synth. Catal. 2004, 346, 1599.
[4]
(b) Hayashi T. Acc. Chem. Res. 2000, 33, 354.
[5]
(a) Zhuang R.; Xu J.; Cai Z.; Tang G.; Fang M.; Zhao Y. Org. Lett. 2011, 13, 2110.
[5]
(b) Lee H.; Yun J. Org. Lett. 2018, 20, 7961.
[5]
(c) Mehellou Y.; Rattan H.S.; Balzarini J. J. Med. Chem. 2018, 61, 2211.
[6]
Demmer C.S.; Krogsgaard-Larsen N.; Bunch L. Chem. Rev. 2011, 111, 7981.
[7]
Li B.; Yang J.; Xu H.; Song H.; Wang B. J. Org. Chem. 2015, 80, 12397.
[8]
(a) Shi W.; Li J.; Su D.; Wang X.; Zhang L.; Pan L.; Wu X.; Wu H. Angew. Chem., Int. Ed. 2019, 58, 1106.
[8]
(b) White J.D.; Laura Q.; Wang G. J. Org. Chem. 2007, 72, 1717.
[9]
Zhu W.; Zhang D.; Yang N.; Liu H. Chem. Commun. 2014, 50, 10634.
[10]
(a) Yang D.; An B.; Wei W.; Tian L.; Huang B.; Wang H. ACS Comb. Sci. 2015, 17, 113.
[10]
(b) Yan K.; Yang D.; Wei W.; Lu S.; Li G.; Zhao C.; Zhang Q.; Wang H. Org. Chem. Front. 2016, 3, 66.
[10]
(c) Gan Z.; Yan Q.; Li G.; Li Q.; Dou X.; Li G.-Y.; Yang D. Adv. Synth. Catal. 2019, 361, 4558.
[11]
(a) Bhunia S.; Pawar G.G.; Kumar S.V.; Jiang Y.; Ma D. Angew. Chem., Int. Ed. 2017, 56, 16136.
[11]
(b) Xu S.; Lu J.; Fu H. Chem. Commun. 2011, 47, 5596.
[11]
(c) Liu X.; Fu H.; Jiang Y.; Zhao Y. Angew. Chem., Int. Ed. 2009, 48, 348.
[11]
(d) Xu L.; Jiang Y.; Ma D. Org. Lett. 2012, 14, 1150.
[11]
(e) Ma D.; Cai Q. Acc. Chem. Res. 2008, 41, 1450.
[11]
(f) Lv X.; Bao W.L. J. Org. Chem. 2009, 74, 5618.
[11]
(g) Martìn R.; Rivero R.; Buchwald S.L. Angew. Chem., Int. Ed. 2006, 45, 7079.
[11]
(h) Liu Y.; Wan J.-P. Org. Biomol. Chem. 2011, 9, 6873.
[11]
(i) Verma A.K.; Kesharwani T.; Singh J.; Tandon V.; Larock R.C. Angew. Chem., Int. Ed. 2009, 48, 1138.
[11]
(j) Moessner C.; Bolm C. Org. Lett. 2005, 7, 2667.
[11]
(k) Cheng L.; Ge X.; Liu X.; Feng Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
[11]
( 成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.).
[11]
(l) Xie J.; Wang X.; Wu F.; Zhang J. Chin. J. Org. Chem. 2019, 39, 3026. (in Chinese)
[11]
( 谢建伟, 汪小创, 吴丰田, 张洁, 有机化学, 2019, 39, 3026.).
[12]
(a) Lu B.; Ma D. Org. Lett. 2006, 8, 6115.
[12]
(b) Xie X.; Cai G.; Ma D. Org. Lett. 2005, 7, 4693.
[12]
(c) Liu T.; Wang R.; Yang H.; Fu H. Chem. -Eur. J. 2011, 17, 6765.
[12]
(d) Li M.; Ning J.; Yu L.; Wen L. Chin. J. Org. Chem. 2016, 36, 2715. (in Chinese)
[12]
( 李明, 宁加彬, 于乐, 文丽荣, 有机化学, 2016, 36, 2715.).
[12]
(e) Zhao S.; Wang Z.-L. Chin. J. Org. Chem. 2016, 36, 862. (in Chinese)
[12]
( 赵苏艳, 王祖利, 有机化学, 2016, 36, 862.).
Outlines

/